matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLinear Algebra
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Linear Algebra
Linear Algebra < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linear Algebra: Abbildungen
Status: (Frage) beantwortet Status 
Datum: 09:14 Mo 13.11.2006
Autor: disconnectus

Aufgabe
Seien M und N beliebige Mengen. Dann ist durch die folgende Vorschrift eine Abbildung
K von M nach Abb(Abb(M,N),N) definiert:

[mm] \forall [/mm] m 2 M, f [mm] \in [/mm] Abb(M,N) : K(m)(f) := f(m).

Was heißt K(m)(f):= f(m) ?

Diese ding: K(m)(f)  verstehe ich nicht.

Ist das gleicht mit f(f(f(m))) = f(m) ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Vielen Dank

        
Bezug
Linear Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 11:21 Mo 13.11.2006
Autor: angela.h.b.


> Seien M und N beliebige Mengen.
> Dann ist durch die folgende Vorschrift eine Abbildung
>  K von M nach Abb(Abb(M,N),N) definiert:
>  
> [mm]\forall[/mm] m [mm] \in [/mm] M, f [mm]\in[/mm] Abb(M,N) : K(m)(f) := f(m).

>  Was heißt K(m)(f):= f(m) ?

Hallo,

die Sache ist fürwahr etwas unübersichtlich.
Du hast die Abbildung K, welche von M in eine andere Menge geht. Nämlich in eine Menge von Abbildungen.

K: M -----> Abb(Abb(M,N),N)

Es ordnet K also jedem Element m aus M eine Abbildung zu.
Diese zugeordnete Abbildung nennen wir gerade mal vorläufig [mm] K_m. [/mm] Einfach, damit das Kind einen Namen hat und wir uns darüber unterhalten können.

Also

[mm] K(m):=K_m, [/mm]  und [mm] K_m [/mm] ist eine Abbildung.

Welcher Art Abbildung ist [mm] K_m? [/mm] Von wo nach wo bildet [mm] K_m [/mm] ab?


K: M -----> Abb(Abb(M,N),N)

[mm] K_m [/mm] bildet ab von Abb(M,N) nach N.

Das bedeutet: die Objekte, auf welche [mm] K_m [/mm] losgelassen wird, sind Abbildungen.

K: M -----> Abb(Abb(M,N),N)

Wollen wir genaueres über [mm] K_m [/mm] wissen, müssen wir erkunden, was [mm] K_m [/mm] mit den Elementen aus Abb(M,N) tut.

Wie ist also [mm] K_m(f) [/mm] für alle [mm] f\in [/mm] Abb(M,N) erklärt?

Wir lasen es oben:

> [mm]\forall[/mm] m [mm] \in [/mm] M, f [mm]\in[/mm] Abb(M,N) : K(m)(f) := f(m)

Unsere Funktion [mm] K_m [/mm] (=K(m) ) ordnet jeder Funktion f ihren Wert an der Stelle m zu.

Soviel zur Klärung des Sachverhaltes.

Jetzt zur Klärung dessen, was die Aufgabe in der Aufgabe ist:

Du sollst zeigen, daß durch K wirklich eine Abbildung definiert wird.
Das beinhaltet zum einen, daß es wirklich zu jedem m [mm] \in [/mm] M ein K(m) gibt, daß die "Maßnahme" überhaupt sinnvoll ist - was hier aber weniger das Thema ist.
Zum anderen - und das ist Deine Aufgabe hier! - ist zu zeigen, daß K durch die gegebene Zuordnungsvorschrift eindeutig definiert ist.
Man sagt auch: K ist wohldefiniert.

In der Hoffnung, einen kleinen Beitrag zur Aufklärung geleistet zu haben

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]