matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLinear-inhomogenes DGL-System
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Linear-inhomogenes DGL-System
Linear-inhomogenes DGL-System < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linear-inhomogenes DGL-System: partielle Lösung
Status: (Frage) beantwortet Status 
Datum: 23:13 Fr 07.02.2014
Autor: Manu3911

Aufgabe
Bestimme die allgemeine Lösung des DGL-Sysstems:

[mm] y'(t)=\begin{pmatrix}5 & -1 \\ 1 & 3 \end{pmatrix}*y(t)+e^t*\begin{pmatrix}3 \\ 3 \end{pmatrix} [/mm]

Hallo,

ich hätte da mal eine Frage: Wie komme ich auf die partikuläre Lösung?

Ich hab für den homogenen Teil ausgerechnet:
[mm] \vec y_1(t)=e^{4t}*\begin{pmatrix}1 \\ 1 \end{pmatrix} [/mm]
[mm] \vec y_2(t)=e^{4t}*[\begin{pmatrix}11 \\ 10 \end{pmatrix}+t*\begin{pmatrix}1 \\ 1 \end{pmatrix}] [/mm]

Für die partikuläre Lösung bin ich mit Probieren rangegangen und dachte mir vom Ansatz her [mm] A*e^t+C. [/mm]

Dann hab ich mir gedacht [mm] A=\begin{pmatrix}3 \\ 3 \end{pmatrix}. [/mm]

Wenn ich das in die vorgegebene Ausgangsgleichung einsetze und C bestimme, damit die Gleichung aufgeht, erhalte ich ja:
[mm] C=-e^t*\begin{pmatrix}3 \\ 3 \end{pmatrix} [/mm]

Aber dann wäre ja [mm] A*e^t+C=0. [/mm] Ich bräcuhte also mal euren Rat bei der partikulären Lösung, wie muss ich denn da rangehen, was machte ich falsch?

Vielen Dank!

        
Bezug
Linear-inhomogenes DGL-System: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Fr 07.02.2014
Autor: MathePower

Hallo Manu3911,

> Bestimme die allgemeine Lösung des DGL-Sysstems:
>  
> [mm]y'(t)=\begin{pmatrix}5 & -1 \\ 1 & 3 \end{pmatrix}*y(t)+e^t*\begin{pmatrix}3 \\ 3 \end{pmatrix}[/mm]
>  
> Hallo,
>  
> ich hätte da mal eine Frage: Wie komme ich auf die
> partikuläre Lösung?
>  
> Ich hab für den homogenen Teil ausgerechnet:
>  [mm]\vec y_1(t)=e^{4t}*\begin{pmatrix}1 \\ 1 \end{pmatrix}[/mm]
>  
> [mm]\vec y_2(t)=e^{4t}*[\begin{pmatrix}11 \\ 10 \end{pmatrix}+t*\begin{pmatrix}1 \\ 1 \end{pmatrix}][/mm]

>


[ok]

  

> Für die partikuläre Lösung bin ich mit Probieren
> rangegangen und dachte mir vom Ansatz her [mm]A*e^t+C.[/mm]
>  


Der Ansatz für die partikuläre Lösung lautet einfach nur

[mm]A*e^{t}[/mm]

, da die Inhomogenität die Form "konstanter Vektor * Exponentialfunktion" hat.


> Dann hab ich mir gedacht [mm]A=\begin{pmatrix}3 \\ 3 \end{pmatrix}.[/mm]
>  
> Wenn ich das in die vorgegebene Ausgangsgleichung einsetze
> und C bestimme, damit die Gleichung aufgeht, erhalte ich
> ja:
>  [mm]C=-e^t*\begin{pmatrix}3 \\ 3 \end{pmatrix}[/mm]
>  
> Aber dann wäre ja [mm]A*e^t+C=0.[/mm] Ich bräcuhte also mal euren
> Rat bei der partikulären Lösung, wie muss ich denn da
> rangehen, was machte ich falsch?
>  
> Vielen Dank!



Gruss
MathePower

Bezug
                
Bezug
Linear-inhomogenes DGL-System: Lösung
Status: (Frage) beantwortet Status 
Datum: 09:26 Sa 08.02.2014
Autor: Manu3911

Hallo,

also ich hab dann [mm] A=\begin{pmatrix}a_1 \\ a_2 \end{pmatrix} [/mm] festgelegt und eingesetzt, umgestellt und hab jetzt raus:
[mm] A=\begin{pmatrix}-1 \\ -1 \end{pmatrix} [/mm]
Ist das korrekt?

Gruß Manu

Bezug
                        
Bezug
Linear-inhomogenes DGL-System: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Sa 08.02.2014
Autor: MathePower

Hallo Manu3911,

> Hallo,
>  
> also ich hab dann [mm]A=\begin{pmatrix}a_1 \\ a_2 \end{pmatrix}[/mm]
> festgelegt und eingesetzt, umgestellt und hab jetzt raus:
>  [mm]A=\begin{pmatrix}-1 \\ -1 \end{pmatrix}[/mm]
>  Ist das korrekt?
>  


Ja.


> Gruß Manu


Gruss
MathePower

Bezug
                                
Bezug
Linear-inhomogenes DGL-System: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:05 Sa 08.02.2014
Autor: Manu3911

Alles klar, vielen Dank für die schnelle Hilfe, hat mir echt geholfen! ((:

Gruß Manu

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]