matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLin. DGL höherer Ordnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Lin. DGL höherer Ordnung
Lin. DGL höherer Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lin. DGL höherer Ordnung: Korrektur + Tipp
Status: (Frage) beantwortet Status 
Datum: 14:16 Do 30.05.2013
Autor: Pia90

Aufgabe 1
Es seien  [mm] \gamma \ge [/mm] 0, [mm] \omega_0, \omega [/mm] > 0, A [mm] \in \IC [/mm] und [mm] a_1, a_2 \in [/mm] IR.

a) Bestimmen Sie die allgemeine (reelle) Lösung von [mm] y''+\gamma y'+\omega_0^2y [/mm] = 0.

Aufgabe 2
b) Bestimmen Sie eine partikuläre (komplexe) Lösung von
[mm] y''+\gamma y'+\omega_0^2y [/mm] = [mm] Ae^{i \omega t}. [/mm]

Aufgabe 3
c) Bestimmen Sie eine partikuläre (reelle) Lösung von
[mm] y''+\gamma y'+\omega_0^2y [/mm] = [mm] a_1 cos(\omega [/mm] t) + [mm] a_2 sin(\omega [/mm] t)

Hallo zusammen,

ich sitze nun seit einigen Tagen an den oben genannten Aufgaben(teilen) und versuche diese zu lösen.
Teil a) und b) habe ich glaube ich soweit hinbekommen, aber vielleicht könnte jemand von euch da mal drüberschauen, ob das auch richtig ist?
Bei Teil c) hänge ich allerdings und kriege das noch nicht hin. Ich wäre euch bei der Aufgabe für Tipps, Hinweise etc also sehr dankbar :)

Also zunächst Teil a):

Charakteristisches Polynom: P(t)= [mm] t^2+\gamma t+\omega_0^2 [/mm]
P(t) = 0 [mm] \gdw (t+\bruch{\gamma}{2})^2 [/mm] = [mm] \bruch{\gamma^2}{4} [/mm] - [mm] \omega_0^2 [/mm]

1. Fall: [mm] \bruch{\gamma^2}{4}=\omega_0^2 [/mm]
t=- [mm] \bruch{\gamma}{2} [/mm] (doppelt)
Also Fundamentalsystem: x [mm] \mapsto e^{- \bruch{\gamma}{2}x}; [/mm] x [mm] \mapsto [/mm] x * [mm] e^{- \bruch{\gamma}{2}x} [/mm]

2. Fall: [mm] \bruch{\gamma^2}{4} [/mm] > [mm] \omega_0^2 [/mm]
t= - [mm] \bruch{\gamma}{2} \pm \wurzel{\bruch{\gamma^2}{4}- \omega_0^2} [/mm]
Fundamentalsystem: x [mm] \mapsto e^{(- \bruch{\gamma}{2}+ \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x}, [/mm] x [mm] \mapsto e^{(- \bruch{\gamma}{2}- \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x} [/mm]

3. Fall: [mm] \bruch{\gamma^2}{4} [/mm] < [mm] \omega_0^2 [/mm]
t= [mm] \bruch{1}{2}(-\gamma \pm [/mm] i [mm] \wurzel{4 \omega_0^2 - \gamma^2}) [/mm]
Fundamentalsystem: x [mm] \mapsto e^{\bruch{1}{2}(-\gamma + i \wurzel{4 \omega_0^2 - \gamma^2})x}, [/mm] x [mm] \mapsto e^{\bruch{1}{2}(-\gamma - i \wurzel{4 \omega_0^2 - \gamma^2})x} [/mm]


Teil b) :
In Fall 1 und 2, sowie in Fall 3 für [mm] \gamma [/mm] >0, ist die partikuläre Lösung
[mm] \psi [/mm] (x) = [mm] \bruch{A}{P(i \omega)}*e^{i \omega x} [/mm] = [mm] \bruch{A}{(i \omega)^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x} [/mm] = [mm] \bruch{A}{- \omega^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x} [/mm]

Für [mm] \gamma=0 [/mm] in Fall 3 sind [mm] \mu [/mm] = [mm] \pm [/mm] i [mm] \omega_0 [/mm] Nullstellen von P, wobei [mm] \mu [/mm] = - i [mm] \omega_0 [/mm] nicht definiert, da dann [mm] \omega [/mm] = - [mm] \omega_0, [/mm] was im Widerspruch zu [mm] \omega, \omega_0 [/mm] >0 steht.

Nun also [mm] \omega [/mm] = [mm] \omega_0 [/mm]
Dann [mm] \psi(x) [/mm] = q*(x) [mm] \* e^{i \omega_0 x}. [/mm] Grad q* = 1+ grad(q)=1
Also [mm] \psi(x) [/mm] = (b+cx) [mm] e^{i \omega_0 x} [/mm]
Einsetzen liefert nun ((b+ct) [mm] e^{i \omega_0 t})'' [/mm] + [mm] \gamma [/mm] ((b+ct) [mm] e^{i \omega_0 t})'+ \omega_0^2 [/mm] ((b+ct) [mm] e^{i \omega_0 t}) [/mm] = A [mm] e^{i \omega_0 t} \gdw c=\bruch{A}{2 i \omega_0} [/mm] und b beliebig.


Mit Teil c) komme ich leider nicht wirklich klar:
Aus Teil a habe ich ja bereits die Nullstellen des charakteristischen Polynoms und das Fundamentalsystem der homogenen Gleichung

Ich habe nun überlegt, dass ich nun
y'' + [mm] \gamma [/mm] y' + [mm] \omega_0^2 [/mm] y = [mm] a_1 [/mm] * [mm] e^{i \omega t} [/mm] + [mm] a_2* e^{i \omega t} [/mm] = [mm] (a_1 [/mm] + [mm] a_2) e^{i \omega t} [/mm] betrachten könnte, weiß aber gar nicht, ob das überhaupt so stimmt.
Was mir bei diesem Aufgabenteil Probleme bereitet sind sin und cos auf der rechten Seite und ich kann damit noch nicht so ganz etwas anfangen...
Kann mir jemand hier weiterhelfen?


Vielen Dank im Voraus!

Schönen Feiertag, Pia


        
Bezug
Lin. DGL höherer Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Do 30.05.2013
Autor: MathePower

Hallo Pia90,

> Es seien  [mm]\gamma \ge[/mm] 0, [mm]\omega_0, \omega[/mm] > 0, A [mm]\in \IC[/mm] und
> [mm]a_1, a_2 \in[/mm] IR.
>  
> a) Bestimmen Sie die allgemeine (reelle) Lösung von
> [mm]y''+\gamma y'+\omega_0^2y[/mm] = 0.
>  b) Bestimmen Sie eine partikuläre (komplexe) Lösung von
> [mm]y''+\gamma y'+\omega_0^2y[/mm] = [mm]Ae^{i \omega t}.[/mm]
>  c) Bestimmen
> Sie eine partikuläre (reelle) Lösung von
>  [mm]y''+\gamma y'+\omega_0^2y[/mm] = [mm]a_1 cos(\omega[/mm] t) + [mm]a_2 sin(\omega[/mm]
> t)
>  Hallo zusammen,
>  
> ich sitze nun seit einigen Tagen an den oben genannten
> Aufgaben(teilen) und versuche diese zu lösen.
>  Teil a) und b) habe ich glaube ich soweit hinbekommen,
> aber vielleicht könnte jemand von euch da mal
> drüberschauen, ob das auch richtig ist?
>  Bei Teil c) hänge ich allerdings und kriege das noch
> nicht hin. Ich wäre euch bei der Aufgabe für Tipps,
> Hinweise etc also sehr dankbar :)
>  
> Also zunächst Teil a):
>  
> Charakteristisches Polynom: P(t)= [mm]t^2+\gamma t+\omega_0^2[/mm]
>  
> P(t) = 0 [mm]\gdw (t+\bruch{\gamma}{2})^2[/mm] = [mm]\bruch{\gamma^2}{4}[/mm]
> - [mm]\omega_0^2[/mm]
>  
> 1. Fall: [mm]\bruch{\gamma^2}{4}=\omega_0^2[/mm]
>  t=- [mm]\bruch{\gamma}{2}[/mm] (doppelt)
>  Also Fundamentalsystem: x [mm]\mapsto e^{- \bruch{\gamma}{2}x};[/mm]
> x [mm]\mapsto[/mm] x * [mm]e^{- \bruch{\gamma}{2}x}[/mm]
>  
> 2. Fall: [mm]\bruch{\gamma^2}{4}[/mm] > [mm]\omega_0^2[/mm]
>  t= - [mm]\bruch{\gamma}{2} \pm \wurzel{\bruch{\gamma^2}{4}- \omega_0^2}[/mm]
>  
> Fundamentalsystem: x [mm]\mapsto e^{(- \bruch{\gamma}{2}+ \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x},[/mm]
> x [mm]\mapsto e^{(- \bruch{\gamma}{2}- \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x}[/mm]
>  
> 3. Fall: [mm]\bruch{\gamma^2}{4}[/mm] < [mm]\omega_0^2[/mm]
>  t= [mm]\bruch{1}{2}(-\gamma \pm[/mm] i [mm]\wurzel{4 \omega_0^2 - \gamma^2})[/mm]
>  
> Fundamentalsystem: x [mm]\mapsto e^{\bruch{1}{2}(-\gamma + i \wurzel{4 \omega_0^2 - \gamma^2})x},[/mm]
> x [mm]\mapsto e^{\bruch{1}{2}(-\gamma - i \wurzel{4 \omega_0^2 - \gamma^2})x}[/mm]
>  
>
> Teil b) :
>  In Fall 1 und 2, sowie in Fall 3 für [mm]\gamma[/mm] >0, ist die
> partikuläre Lösung
>  [mm]\psi[/mm] (x) = [mm]\bruch{A}{P(i \omega)}*e^{i \omega x}[/mm] =
> [mm]\bruch{A}{(i \omega)^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x}[/mm]
> = [mm]\bruch{A}{- \omega^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x}[/mm]
>  
> Für [mm]\gamma=0[/mm] in Fall 3 sind [mm]\mu[/mm] = [mm]\pm[/mm] i [mm]\omega_0[/mm]
> Nullstellen von P, wobei [mm]\mu[/mm] = - i [mm]\omega_0[/mm] nicht
> definiert, da dann [mm]\omega[/mm] = - [mm]\omega_0,[/mm] was im Widerspruch
> zu [mm]\omega, \omega_0[/mm] >0 steht.
>  
> Nun also [mm]\omega[/mm] = [mm]\omega_0[/mm]
>  Dann [mm]\psi(x)[/mm] = q*(x) [mm]\* e^{i \omega_0 x}.[/mm] Grad q* = 1+
> grad(q)=1
>  Also [mm]\psi(x)[/mm] = (b+cx) [mm]e^{i \omega_0 x}[/mm]
>  Einsetzen liefert
> nun ((b+ct) [mm]e^{i \omega_0 t})''[/mm] + [mm]\gamma[/mm] ((b+ct) [mm]e^{i \omega_0 t})'+ \omega_0^2[/mm]
> ((b+ct) [mm]e^{i \omega_0 t})[/mm] = A [mm]e^{i \omega_0 t} \gdw c=\bruch{A}{2 i \omega_0}[/mm]
> und b beliebig.
>


Daß b hier beliebig ist, ist kein Wunder,
denn [mm]e^{i*\omega_{0}*t}[/mm] ist ja Lösung der homogenen DGL.


>
> Mit Teil c) komme ich leider nicht wirklich klar:
>  Aus Teil a habe ich ja bereits die Nullstellen des
> charakteristischen Polynoms und das Fundamentalsystem der
> homogenen Gleichung
>  
> Ich habe nun überlegt, dass ich nun
> y'' + [mm]\gamma[/mm] y' + [mm]\omega_0^2[/mm] y = [mm]a_1[/mm] * [mm]e^{i \omega t}[/mm] +
> [mm]a_2* e^{i \omega t}[/mm] = [mm](a_1[/mm] + [mm]a_2) e^{i \omega t}[/mm] betrachten
> könnte, weiß aber gar nicht, ob das überhaupt so
> stimmt.
>  Was mir bei diesem Aufgabenteil Probleme bereitet sind sin
> und cos auf der rechten Seite und ich kann damit noch nicht
> so ganz etwas anfangen...
>  Kann mir jemand hier weiterhelfen?
>  


Hier empfiehlt sich die reelle Rechnung.


>
> Vielen Dank im Voraus!
>  
> Schönen Feiertag, Pia

>


Gruss
MathePower  

Bezug
                
Bezug
Lin. DGL höherer Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Do 30.05.2013
Autor: Pia90

Danke zunächst einmal für die Antwort!

> Hallo Pia90,
>  
> > Es seien  [mm]\gamma \ge[/mm] 0, [mm]\omega_0, \omega[/mm] > 0, A [mm]\in \IC[/mm] und
> > [mm]a_1, a_2 \in[/mm] IR.
>  >  
> > a) Bestimmen Sie die allgemeine (reelle) Lösung von
> > [mm]y''+\gamma y'+\omega_0^2y[/mm] = 0.
>  >  b) Bestimmen Sie eine partikuläre (komplexe) Lösung
> von
> > [mm]y''+\gamma y'+\omega_0^2y[/mm] = [mm]Ae^{i \omega t}.[/mm]
>  >  c)
> Bestimmen
> > Sie eine partikuläre (reelle) Lösung von
>  >  [mm]y''+\gamma y'+\omega_0^2y[/mm] = [mm]a_1 cos(\omega[/mm] t) + [mm]a_2 sin(\omega[/mm]
> > t)
>  >  Hallo zusammen,
>  >  
> > ich sitze nun seit einigen Tagen an den oben genannten
> > Aufgaben(teilen) und versuche diese zu lösen.
>  >  Teil a) und b) habe ich glaube ich soweit hinbekommen,
> > aber vielleicht könnte jemand von euch da mal
> > drüberschauen, ob das auch richtig ist?
>  >  Bei Teil c) hänge ich allerdings und kriege das noch
> > nicht hin. Ich wäre euch bei der Aufgabe für Tipps,
> > Hinweise etc also sehr dankbar :)
>  >  
> > Also zunächst Teil a):
>  >  
> > Charakteristisches Polynom: P(t)= [mm]t^2+\gamma t+\omega_0^2[/mm]
>  
> >  

> > P(t) = 0 [mm]\gdw (t+\bruch{\gamma}{2})^2[/mm] = [mm]\bruch{\gamma^2}{4}[/mm]
> > - [mm]\omega_0^2[/mm]
>  >  
> > 1. Fall: [mm]\bruch{\gamma^2}{4}=\omega_0^2[/mm]
>  >  t=- [mm]\bruch{\gamma}{2}[/mm] (doppelt)
>  >  Also Fundamentalsystem: x [mm]\mapsto e^{- \bruch{\gamma}{2}x};[/mm]
> > x [mm]\mapsto[/mm] x * [mm]e^{- \bruch{\gamma}{2}x}[/mm]
>  >  
> > 2. Fall: [mm]\bruch{\gamma^2}{4}[/mm] > [mm]\omega_0^2[/mm]
>  >  t= - [mm]\bruch{\gamma}{2} \pm \wurzel{\bruch{\gamma^2}{4}- \omega_0^2}[/mm]
>  
> >  

> > Fundamentalsystem: x [mm]\mapsto e^{(- \bruch{\gamma}{2}+ \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x},[/mm]
> > x [mm]\mapsto e^{(- \bruch{\gamma}{2}- \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x}[/mm]
>  
> >  

> > 3. Fall: [mm]\bruch{\gamma^2}{4}[/mm] < [mm]\omega_0^2[/mm]
>  >  t= [mm]\bruch{1}{2}(-\gamma \pm[/mm] i [mm]\wurzel{4 \omega_0^2 - \gamma^2})[/mm]
>  
> >  

> > Fundamentalsystem: x [mm]\mapsto e^{\bruch{1}{2}(-\gamma + i \wurzel{4 \omega_0^2 - \gamma^2})x},[/mm]
> > x [mm]\mapsto e^{\bruch{1}{2}(-\gamma - i \wurzel{4 \omega_0^2 - \gamma^2})x}[/mm]
>  
> >  

> >
> > Teil b) :
>  >  In Fall 1 und 2, sowie in Fall 3 für [mm]\gamma[/mm] >0, ist
> die
> > partikuläre Lösung
>  >  [mm]\psi[/mm] (x) = [mm]\bruch{A}{P(i \omega)}*e^{i \omega x}[/mm] =
> > [mm]\bruch{A}{(i \omega)^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x}[/mm]
> > = [mm]\bruch{A}{- \omega^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x}[/mm]
>  
> >  

> > Für [mm]\gamma=0[/mm] in Fall 3 sind [mm]\mu[/mm] = [mm]\pm[/mm] i [mm]\omega_0[/mm]
> > Nullstellen von P, wobei [mm]\mu[/mm] = - i [mm]\omega_0[/mm] nicht
> > definiert, da dann [mm]\omega[/mm] = - [mm]\omega_0,[/mm] was im Widerspruch
> > zu [mm]\omega, \omega_0[/mm] >0 steht.
>  >  
> > Nun also [mm]\omega[/mm] = [mm]\omega_0[/mm]
>  >  Dann [mm]\psi(x)[/mm] = q*(x) [mm]\* e^{i \omega_0 x}.[/mm] Grad q* = 1+
> > grad(q)=1
>  >  Also [mm]\psi(x)[/mm] = (b+cx) [mm]e^{i \omega_0 x}[/mm]
>  >  Einsetzen
> liefert
> > nun ((b+ct) [mm]e^{i \omega_0 t})''[/mm] + [mm]\gamma[/mm] ((b+ct) [mm]e^{i \omega_0 t})'+ \omega_0^2[/mm]
> > ((b+ct) [mm]e^{i \omega_0 t})[/mm] = A [mm]e^{i \omega_0 t} \gdw c=\bruch{A}{2 i \omega_0}[/mm]
> > und b beliebig.
>  >

>
>
> Daß b hier beliebig ist, ist kein Wunder,
>  denn [mm]e^{i*\omega_{0}*t}[/mm] ist ja Lösung der homogenen DGL.

Sind meine Ausführungen denn insgesamt richtig?

>
>
> >
> > Mit Teil c) komme ich leider nicht wirklich klar:
>  >  Aus Teil a habe ich ja bereits die Nullstellen des
> > charakteristischen Polynoms und das Fundamentalsystem der
> > homogenen Gleichung
>  >  
> > Ich habe nun überlegt, dass ich nun
> > y'' + [mm]\gamma[/mm] y' + [mm]\omega_0^2[/mm] y = [mm]a_1[/mm] * [mm]e^{i \omega t}[/mm] +
> > [mm]a_2* e^{i \omega t}[/mm] = [mm](a_1[/mm] + [mm]a_2) e^{i \omega t}[/mm] betrachten
> > könnte, weiß aber gar nicht, ob das überhaupt so
> > stimmt.
>  >  Was mir bei diesem Aufgabenteil Probleme bereitet sind
> sin
> > und cos auf der rechten Seite und ich kann damit noch nicht
> > so ganz etwas anfangen...
>  >  Kann mir jemand hier weiterhelfen?
>  >  
>
>
> Hier empfiehlt sich die reelle Rechnung.

Ich muss gestehen, dass ich hiermit leider nicht allzu viel anfangen kann... Ich glaube ich stehe vollkommen auf dem Schlauch...
Wie muss ich denn dann ansetzen?

>  
>
> >
> > Vielen Dank im Voraus!
>  >  
> > Schönen Feiertag, Pia
>  >
>  
>
> Gruss
>  MathePower    


Bezug
                        
Bezug
Lin. DGL höherer Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Do 30.05.2013
Autor: MathePower

Hallo Pia90,

> Danke zunächst einmal für die Antwort!
>  
> > Hallo Pia90,
>  >  
> > > Es seien  [mm]\gamma \ge[/mm] 0, [mm]\omega_0, \omega[/mm] > 0, A [mm]\in \IC[/mm] und
> > > [mm]a_1, a_2 \in[/mm] IR.
>  >  >  
> > > a) Bestimmen Sie die allgemeine (reelle) Lösung von
> > > [mm]y''+\gamma y'+\omega_0^2y[/mm] = 0.
>  >  >  b) Bestimmen Sie eine partikuläre (komplexe)
> Lösung
> > von
> > > [mm]y''+\gamma y'+\omega_0^2y[/mm] = [mm]Ae^{i \omega t}.[/mm]
>  >  >  c)
> > Bestimmen
> > > Sie eine partikuläre (reelle) Lösung von
>  >  >  [mm]y''+\gamma y'+\omega_0^2y[/mm] = [mm]a_1 cos(\omega[/mm] t) + [mm]a_2 sin(\omega[/mm]
> > > t)
>  >  >  Hallo zusammen,
>  >  >  
> > > ich sitze nun seit einigen Tagen an den oben genannten
> > > Aufgaben(teilen) und versuche diese zu lösen.
>  >  >  Teil a) und b) habe ich glaube ich soweit
> hinbekommen,
> > > aber vielleicht könnte jemand von euch da mal
> > > drüberschauen, ob das auch richtig ist?
>  >  >  Bei Teil c) hänge ich allerdings und kriege das
> noch
> > > nicht hin. Ich wäre euch bei der Aufgabe für Tipps,
> > > Hinweise etc also sehr dankbar :)
>  >  >  
> > > Also zunächst Teil a):
>  >  >  
> > > Charakteristisches Polynom: P(t)= [mm]t^2+\gamma t+\omega_0^2[/mm]
>  
> >  

> > >  

> > > P(t) = 0 [mm]\gdw (t+\bruch{\gamma}{2})^2[/mm] = [mm]\bruch{\gamma^2}{4}[/mm]
> > > - [mm]\omega_0^2[/mm]
>  >  >  
> > > 1. Fall: [mm]\bruch{\gamma^2}{4}=\omega_0^2[/mm]
>  >  >  t=- [mm]\bruch{\gamma}{2}[/mm] (doppelt)
>  >  >  Also Fundamentalsystem: x [mm]\mapsto e^{- \bruch{\gamma}{2}x};[/mm]
> > > x [mm]\mapsto[/mm] x * [mm]e^{- \bruch{\gamma}{2}x}[/mm]
>  >  >  
> > > 2. Fall: [mm]\bruch{\gamma^2}{4}[/mm] > [mm]\omega_0^2[/mm]
>  >  >  t= - [mm]\bruch{\gamma}{2} \pm \wurzel{\bruch{\gamma^2}{4}- \omega_0^2}[/mm]
>  
> >  

> > >  

> > > Fundamentalsystem: x [mm]\mapsto e^{(- \bruch{\gamma}{2}+ \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x},[/mm]
> > > x [mm]\mapsto e^{(- \bruch{\gamma}{2}- \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x}[/mm]
>  
> >  

> > >  

> > > 3. Fall: [mm]\bruch{\gamma^2}{4}[/mm] < [mm]\omega_0^2[/mm]
>  >  >  t= [mm]\bruch{1}{2}(-\gamma \pm[/mm] i [mm]\wurzel{4 \omega_0^2 - \gamma^2})[/mm]
>  
> >  

> > >  

> > > Fundamentalsystem: x [mm]\mapsto e^{\bruch{1}{2}(-\gamma + i \wurzel{4 \omega_0^2 - \gamma^2})x},[/mm]
> > > x [mm]\mapsto e^{\bruch{1}{2}(-\gamma - i \wurzel{4 \omega_0^2 - \gamma^2})x}[/mm]
>  
> >  

> > >  

> > >
> > > Teil b) :
>  >  >  In Fall 1 und 2, sowie in Fall 3 für [mm]\gamma[/mm] >0, ist
> > die
> > > partikuläre Lösung
>  >  >  [mm]\psi[/mm] (x) = [mm]\bruch{A}{P(i \omega)}*e^{i \omega x}[/mm] =
> > > [mm]\bruch{A}{(i \omega)^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x}[/mm]
> > > = [mm]\bruch{A}{- \omega^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x}[/mm]
>  
> >  

> > >  

> > > Für [mm]\gamma=0[/mm] in Fall 3 sind [mm]\mu[/mm] = [mm]\pm[/mm] i [mm]\omega_0[/mm]
> > > Nullstellen von P, wobei [mm]\mu[/mm] = - i [mm]\omega_0[/mm] nicht
> > > definiert, da dann [mm]\omega[/mm] = - [mm]\omega_0,[/mm] was im Widerspruch
> > > zu [mm]\omega, \omega_0[/mm] >0 steht.
>  >  >  
> > > Nun also [mm]\omega[/mm] = [mm]\omega_0[/mm]
>  >  >  Dann [mm]\psi(x)[/mm] = q*(x) [mm]\* e^{i \omega_0 x}.[/mm] Grad q* =
> 1+
> > > grad(q)=1
>  >  >  Also [mm]\psi(x)[/mm] = (b+cx) [mm]e^{i \omega_0 x}[/mm]
>  >  >  
> Einsetzen
> > liefert
> > > nun ((b+ct) [mm]e^{i \omega_0 t})''[/mm] + [mm]\gamma[/mm] ((b+ct) [mm]e^{i \omega_0 t})'+ \omega_0^2[/mm]
> > > ((b+ct) [mm]e^{i \omega_0 t})[/mm] = A [mm]e^{i \omega_0 t} \gdw c=\bruch{A}{2 i \omega_0}[/mm]
> > > und b beliebig.
>  >  >

> >
> >
> > Daß b hier beliebig ist, ist kein Wunder,
>  >  denn [mm]e^{i*\omega_{0}*t}[/mm] ist ja Lösung der homogenen
> DGL.
>
> Sind meine Ausführungen denn insgesamt richtig?
>  


Ja.

> >
> >
> > >
> > > Mit Teil c) komme ich leider nicht wirklich klar:
>  >  >  Aus Teil a habe ich ja bereits die Nullstellen des
> > > charakteristischen Polynoms und das Fundamentalsystem der
> > > homogenen Gleichung
>  >  >  
> > > Ich habe nun überlegt, dass ich nun
> > > y'' + [mm]\gamma[/mm] y' + [mm]\omega_0^2[/mm] y = [mm]a_1[/mm] * [mm]e^{i \omega t}[/mm] +
> > > [mm]a_2* e^{i \omega t}[/mm] = [mm](a_1[/mm] + [mm]a_2) e^{i \omega t}[/mm] betrachten
> > > könnte, weiß aber gar nicht, ob das überhaupt so
> > > stimmt.
>  >  >  Was mir bei diesem Aufgabenteil Probleme bereitet
> sind
> > sin
> > > und cos auf der rechten Seite und ich kann damit noch nicht
> > > so ganz etwas anfangen...
>  >  >  Kann mir jemand hier weiterhelfen?
>  >  >  
> >
> >
> > Hier empfiehlt sich die reelle Rechnung.
>  
> Ich muss gestehen, dass ich hiermit leider nicht allzu viel
> anfangen kann... Ich glaube ich stehe vollkommen auf dem
> Schlauch...
>  Wie muss ich denn dann ansetzen?
>  

Das kommt darauf an, ob die rechte Seite der DGL eine Lösung
der homogenen DGL ist oder nicht,.


Der Ansatz im Falle, daß die rechte Seite der DGL
keine Lösung der  homogenen DGL ist:

[mm]c_{1}*\cos\left(\omega*t\right)+c_{2}*\sin\left(\omega*t\right)[/mm]


> >  

> >
> > >
> > > Vielen Dank im Voraus!
>  >  >  
> > > Schönen Feiertag, Pia
>  >  >
>  >  
> >
> > Gruss
>  >  MathePower    
>  


Gruss
MathePower

Bezug
                                
Bezug
Lin. DGL höherer Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:54 Di 04.06.2013
Autor: Pia90

Danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]