matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenLin. Abbildung von Polynomen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Lin. Abbildung von Polynomen
Lin. Abbildung von Polynomen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lin. Abbildung von Polynomen: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:24 So 10.01.2010
Autor: etoxxl

Aufgabe
Sei (K,+, ·) ein Körper und sei [mm] P_4(K) [/mm] die Menge der Polynome vom Grad kleiner
gleich 4 in der Polynomvariablen x und mit Koeffizienten in K, d.h.:

[mm] P_4 [/mm] (K) := { P(x) = [mm] a_0 [/mm] + [mm] a_1 [/mm] x + [mm] a_2 x^{2} [/mm] + [mm] a_3 x^{3} [/mm] + [mm] a_4 x^{4} [/mm] | [mm] a_0, a_1, a_2, a_3, a_4 \in [/mm] K }.

Die Menge [mm] P_4 [/mm] (K) ist mit der üblichen Polynomaddition und der üblichen
Multiplikation von Polynomen mit Elementen von K ein K-Vektorraum. Sei [mm] \Phi [/mm]  die
Abbildung:
[mm] \Phi: P_4 [/mm] (K) [mm] \to K^{2}, \Phi(P) [/mm] := [mm] \vektor{P(0) \\ P(1)} [/mm]

Zeigen Sie, dass [mm] \Phi [/mm]  K-linear ist und geben Sie Basen fürr den Kern und das Bild
von [mm] \Phi [/mm]  an.

Guten Abend!

Folgende Fragen stellen sich auf:

1) Bedeutet K-linear, dass es einer lineare Abbildung auf dem Körper K ist?
Wenn ja, ist es dann richtig es folgenderweise zu zeigen?

[mm] \Phi(P_1 [/mm] (x) + [mm] P_2 [/mm] (x) ) = ... = [mm] (a_0, a_0 [/mm] + [mm] a_1 [/mm] + [mm] a_2 [/mm] + [mm] a_3 [/mm] + [mm] a_4) [/mm] + [mm] (b_0, b_1 [/mm] + [mm] b_2 [/mm] + [mm] b_3 [/mm] + [mm] b_4 [/mm] ) = [mm] \Phi(P_1) [/mm] + [mm] \Phi(P_2) [/mm]
und dem entsprechend für [mm] \Phi(\lambda*P(x)) [/mm] = [mm] \lambda [/mm] * [mm] \Phi( [/mm] P(x) )

2) Der Kern dieser Abbildung sind alle Polynome, die auf (0,0) abbilden.
Dies gilt ja nur für [mm] a_0 [/mm] = 0 und [mm] a_1 [/mm] + [mm] a_2 [/mm] + [mm] a_3 [/mm] + [mm] a_4 [/mm] = 0
Wie kann ich jetzt hieraus eine Basis basteln?
Uns wurde der folgende Tipp gegeben: x, [mm] x^{2} [/mm] , [mm] x^{3} [/mm] , [mm] x^{4} [/mm] sind lin. unabh. Wie kann man das hier benutzen?



        
Bezug
Lin. Abbildung von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 So 10.01.2010
Autor: steppenhahn

Hallo,


> Zeigen Sie, dass [mm]\Phi[/mm]  K-linear ist und geben Sie Basen
> fürr den Kern und das Bild
>  von [mm]\Phi[/mm]  an.
>  
> Guten Abend!
>  
> Folgende Fragen stellen sich auf:
>  
> 1) Bedeutet K-linear, dass es einer lineare Abbildung auf
> dem Körper K ist?

Ja. Das bedeutet, deine Skalare kommen aus K.

>  Wenn ja, ist es dann richtig es folgenderweise zu zeigen?
>  
> [mm]\Phi(P_1[/mm] (x) + [mm]P_2[/mm] (x) ) = ... = [mm](a_0, a_0[/mm] + [mm]a_1[/mm] + [mm]a_2[/mm] +
> [mm]a_3[/mm] + [mm]a_4)[/mm] + [mm](b_0, b_1[/mm] + [mm]b_2[/mm] + [mm]b_3[/mm] + [mm]b_4[/mm] ) = [mm]\Phi(P_1)[/mm] +
> [mm]\Phi(P_2)[/mm]
>  und dem entsprechend für [mm]\Phi(\lambda*P(x))[/mm] = [mm]\lambda[/mm] *
> [mm]\Phi([/mm] P(x) )

Das sieht noch nicht richtig aus. Bzw.: Gerade die entscheidende Stelle hast du nicht aufgeschrieben, deswegen weiß ich nicht, ob du das richtige dabei gedacht hast.

[mm] $\Phi(P_{1} [/mm] + [mm] P_{2})$ [/mm]

Im nächsten Schritt kannst du erstmal [mm] P_{1} [/mm] und [mm] P_{2} [/mm] "ausschreiben" (also wie man Polynome eben hinschreibt, mit x).
Dann benutzt du noch in [mm] \Phi [/mm] die Definition der Addition von Polynomen. Danach kannst du [mm] \Phi [/mm] anwenden, weil jetzt nur noch ein Polynom dasteht. Jetzt befindest du dich in [mm] K^{n} [/mm] und kannst die Tupel auseinanderziehen, sodass du die rechte Seite von der Gleichung oben in deinem Beweis erhältst.

> 2) Der Kern dieser Abbildung sind alle Polynome, die auf
> (0,0) abbilden.
>  Dies gilt ja nur für [mm]a_0[/mm] = 0 und [mm]a_1[/mm] + [mm]a_2[/mm] + [mm]a_3[/mm] + [mm]a_4[/mm] =
> 0
>  Wie kann ich jetzt hieraus eine Basis basteln?
>  Uns wurde der folgende Tipp gegeben: x, [mm]x^{2}[/mm] , [mm]x^{3}[/mm] ,
> [mm]x^{4}[/mm] sind lin. unabh. Wie kann man das hier benutzen?

Dein Ansatz ist schonmal richtig. So, wie es aussieht, habt ihr noch gar nicht "gelernt", dass x, [mm] x^{2},... [/mm] usw. im Polynomring linear unabhängig sind. Das brauchst du, um dann eine Basis angeben zu können (sonst kannst du ja gar nicht verifizieren, dass deine gefundene Basis auch linear unabhängig ist!).

Wenn du weißt, dass [mm]a_0[/mm] = 0 und [mm]a_1[/mm] + [mm]a_2[/mm] + [mm]a_3[/mm] + [mm]a_4[/mm] = 0 gelten müssen, kannst du noch umstellen:

[mm] $-a_{1} [/mm] - [mm] a_{2} [/mm] - [mm] a_{3} [/mm] = [mm] a_{4}$. [/mm]

Daraus erhältst du nun zusammen mit der Bedingung [mm] a_{0} [/mm] = 0, dass alle Polynome der Form:

[mm] $a_{1}*x [/mm] + [mm] a_{2}*x^{2} [/mm] + [mm] a_{3}*x^{3} [/mm] + [mm] (-a_{1} [/mm] - [mm] a_{2} [/mm] - [mm] a_{3})*x^{4}$ [/mm]

mit [mm] a_{1},a_{2},a_{3} [/mm] beliebig aus K den Kern bilden, es gilt also:

[mm] $Kern(\Phi) [/mm] = [mm] \{a_{1}*x + a_{2}*x^{2} + a_{3}*x^{3} + (-a_{1} - a_{2} - a_{3})*x^{4}|a_{1},a_{2},a_{3}\in K\}$ [/mm]

Nun musst du nach [mm] a_{1}, a_{2} [/mm] und [mm] a_{3} [/mm] sortieren:

[mm] $Kern(\Phi) [/mm] = [mm] \{a_{1}*(x-x^{4}) + a_{2}*(x^{2}-x^{4}) + a_{3}*(x^{3} -x^{4})|a_{1},a_{2},a_{3}\in K\}$ [/mm]

Nun kann man die Basis schon ablesen: es ist

[mm] $((x-x^{4}),(x^{2}-x^{4}),(x^{3}-x^{4}))$. [/mm]

Das diese Erzeugendensystem ist, kannst du direkt oben an der Konstruktion des Kerns ablesen. Nun musst du aber eben deine gegebenen Hinweise etc. benutzen, um zu zeigen, dass das auch linear unabhängig ist.

Grüße,
Stefan

Bezug
                
Bezug
Lin. Abbildung von Polynomen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 So 10.01.2010
Autor: etoxxl

Vielen Dank für die ausführliche Antwort!

> Wenn du weißt, dass [mm]a_0[/mm] = 0 und [mm]a_1[/mm] + [mm]a_2[/mm] + [mm]a_3[/mm] + [mm]a_4[/mm] = 0
> gelten müssen, kannst du noch umstellen:
>  
> [mm]-a_{1} - a_{2} - a_{3} = a_{4}[/mm].
>  
> Daraus erhältst du nun zusammen mit der Bedingung [mm]a_{0}[/mm] =
> 0, dass alle Polynome der Form:
>  
> [mm]a_{1}*x + a_{2}*x^{2} + a_{3}*x^{3} + (-a_{1} - a_{2} - a_{3})*x^{4}[/mm]
>  
> mit [mm]a_{1},a_{2},a_{3}[/mm] beliebig aus K den Kern bilden, es
> gilt also:
>  
> [mm]Kern(\Phi) = \{a_{1}*x + a_{2}*x^{2} + a_{3}*x^{3} + (-a_{1} - a_{2} - a_{3})*x^{4}|a_{1},a_{2},a_{3}\in K\}[/mm]
>  
> Nun musst du nach [mm]a_{1}, a_{2}[/mm] und [mm]a_{3}[/mm] sortieren:
>  
> [mm]Kern(\Phi) = \{a_{1}*(x-x^{4}) + a_{2}*(x^{2}-x^{4}) + a_{3}*(x^{3} -x^{4})|a_{1},a_{2},a_{3}\in K\}[/mm]
>  
> Nun kann man die Basis schon ablesen: es ist
>  
> [mm]((x-x^{4}),(x^{2}-x^{4}),(x^{3}-x^{4}))[/mm].
>  
> Das diese Erzeugendensystem ist, kannst du direkt oben an
> der Konstruktion des Kerns ablesen.

Wieso sieht man das direkt?
Wie kann man aus der Schreibweise des Kerns ein Erzeugendessystem ablesen?
Wie genau bezeichnet man denn deine Schreibweise, also z.B.: [mm] (x-x^4) [/mm] Ein Vektor ist das ja nicht, oder doch?


Bezug
                        
Bezug
Lin. Abbildung von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 So 10.01.2010
Autor: steppenhahn

Hallo,

> Vielen Dank für die ausführliche Antwort!
>  
> > Wenn du weißt, dass [mm]a_0[/mm] = 0 und [mm]a_1[/mm] + [mm]a_2[/mm] + [mm]a_3[/mm] + [mm]a_4[/mm] = 0
> > gelten müssen, kannst du noch umstellen:
>  >  
> > [mm]-a_{1} - a_{2} - a_{3} = a_{4}[/mm].
>  >  
> > Daraus erhältst du nun zusammen mit der Bedingung [mm]a_{0}[/mm] =
> > 0, dass alle Polynome der Form:
>  >  
> > [mm]a_{1}*x + a_{2}*x^{2} + a_{3}*x^{3} + (-a_{1} - a_{2} - a_{3})*x^{4}[/mm]
>  
> >  

> > mit [mm]a_{1},a_{2},a_{3}[/mm] beliebig aus K den Kern bilden, es
> > gilt also:
>  >  
> > [mm]Kern(\Phi) = \{a_{1}*x + a_{2}*x^{2} + a_{3}*x^{3} + (-a_{1} - a_{2} - a_{3})*x^{4}|a_{1},a_{2},a_{3}\in K\}[/mm]
>  
> >  

> > Nun musst du nach [mm]a_{1}, a_{2}[/mm] und [mm]a_{3}[/mm] sortieren:
>  >  
> > [mm]Kern(\Phi) = \{a_{1}*(x-x^{4}) + a_{2}*(x^{2}-x^{4}) + a_{3}*(x^{3} -x^{4})|a_{1},a_{2},a_{3}\in K\}[/mm]
>  
> >  

> > Nun kann man die Basis schon ablesen: es ist
>  >  
> > [mm]((x-x^{4}),(x^{2}-x^{4}),(x^{3}-x^{4}))[/mm].
>  >  
> > Das diese Erzeugendensystem ist, kannst du direkt oben an
> > der Konstruktion des Kerns ablesen.
>  
> Wieso sieht man das direkt?
>  Wie kann man aus der Schreibweise des Kerns ein
> Erzeugendessystem ablesen?
>  Wie genau bezeichnet man denn deine Schreibweise, also
> z.B.: [mm](x-x^4)[/mm] Ein Vektor ist das ja nicht, oder doch?

Doch, [mm] (x-x^{4}) [/mm] ist ein Vektor des Vektorraums [mm] P_{4}(x), [/mm] der Menge aller Polynome bis höchstens Grad 4. Denn [mm] x-x^{4} [/mm] ist ja ein Polynom von Grad kleiner gleich 4.

Du siehst, dass der Kern aus der Menge

[mm] $\{a_{1}*(x-x^{4}) + a_{2}*(x^{2}-x^{4}) + a_{3}*(x^{3} -x^{4})|a_{1},a_{2},a_{3}\in K\}$ [/mm]

besteht. Das heißt der Kern besteht aus der Menge von Linearkombinationen der drei obigen Polynome. Da die Skalare [mm] a_{1},a_{2},a_{3} [/mm] beliebig aus K gewählt werden können, kannst du auch schreiben:

$Kern = [mm] span((x-x^{4}),(x^{2}-x^{4}),(x^{3}-x^{4})) [/mm] = [mm] Lin((x-x^{4}),(x^{2}-x^{4}),(x^{3}-x^{4}))$. [/mm]

(Lineare Hülle, Menge aller Linearkombinationen, je nachdem, wie ihr's genannt habt).
Daran kann man nun sehen, dass der Kern von den drei Vektoren erzeugt wird.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]