matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenLin. Abb. mit sin und cos
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Lin. Abb. mit sin und cos
Lin. Abb. mit sin und cos < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lin. Abb. mit sin und cos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Mi 19.05.2010
Autor: Antimon88

Aufgabe
Die lineare Abbildung [mm]\varepsilon : \IR^{4} \to \IR^{3}[/mm] sei bezüglich der kanonischen Basen [mm]e_{1}, e_{2}, e_{3}, e_{4}[/mm] und [mm]e_{1}, e_{2}, e_{3}[/mm] durch die Darstellungsmatrix

[mm]A=\pmat{ 1 & 0 & 0 & 0 \\ 0 & cos(\alpha) & -sin(\alpha) & 0 \\ 0 & sin(\alpha) & cos(\alpha) & 0 }[/mm]

gegeben. Was ist die geometrische Wirkung von A? Hinweis: Was passiert mit der 2-3-Ebene und was mit der 4. Achse? Berechnen Sie die Darstellungsmatrix A' von [mm] \varepsilon [/mm] bezüglich der Basen [mm]e_{1}, e_{1}+2e_{2}, 2e_{2}+e_{3}, 5e_{4}[/mm] in  [mm]\IR^{4}[/mm] und [mm]e_{1}, e_{1}+2e_{2}, 3e_{3}[/mm] in [mm]\IR^{3}[/mm].

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi Leute,

ich weiß nicht, wie ich die geometrische Wirkung interpretieren soll. Ich denken, es wir hier auf sin und cos angespielt, aber ich kann mir das nicht vorstellen, wie sich das auf die Vektoren/Matrix auswirkt, bzw. wie ich mir das (zumindest in 3D) vorstellen soll.

Mit der 2-3-Ebene sind doch quasi die 2 und 3 Zeile der Matrix gemeint  und mit der 4. Achse die 4. Spalte, oder? Ich versteh irgendwie die Fragestellung nicht. Was soll ich darauf antworten, wenn gefragt ist "was passiert". Hab schwierigkeiten mit der mathematischen Terminologie.

Wenn mir jemand soweit helfen könnte, wäre ich sehr dankbar.

Gruß

        
Bezug
Lin. Abb. mit sin und cos: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Do 20.05.2010
Autor: chrisno


> Ich denken, es wir hier auf sin und
> cos angespielt, aber ich kann mir das nicht vorstellen, wie
> sich das auf die Vektoren/Matrix auswirkt, bzw. wie ich mir
> das (zumindest in 3D) vorstellen soll.

Mach das mal in 2-D, nur mit der sin/cos Matrix. Nimm einen Punkt. z.B. (1/3) und setze für [mm] \alpha [/mm] Werte von 10°, 20° usw ein. Dann siehst Du, dass diese Teilmatrix eine Drehung bewirkt.

>  
> Mit der 2-3-Ebene sind doch quasi die 2 und 3 Zeile der
> Matrix gemeint  und mit der 4. Achse die 4. Spalte, oder?

Nun nimm einen Punkt in 4-D und lass die Matrix auf ihn los. Nenne den Punkt ganz allgemein [mm] $(x_1, x_2, x_3, x_4)$. [/mm] Welche Koordinaten hat er danach?

Anstelle von Punkt kann man hier natürlich auch von Vektor reden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]