matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitLimes von oben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Limes von oben
Limes von oben < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes von oben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 So 31.01.2010
Autor: peeetaaa

Aufgabe
lim [mm] \bruch{|x-1|}{x} *e^\bruch{-1}{x} [/mm]
(limes von oben gegen 0)  

hallo zusammen,

hab eine frage zum limes.
Und zwar soll ich den limes von oben gegen 0 berechnen aber ich weiß nicht wie man das macht.
Was muss ich denn da betrachten?

lim f(x) = lim [mm] \bruch{|x-1|}{x} *e^\bruch{-1}{x} [/mm]
= lim [mm] (1-\bruch{1}{x}) [/mm] * lim [mm] e^\bruch{-1}{x} [/mm]

joa und jetzt weiß ich halt nicht was ich da genau betrachten muss...
kann mir das vllt jmd erklären?
danke

        
Bezug
Limes von oben: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 So 31.01.2010
Autor: leduart

Hallo
von oben gegen 0 heisst, einfach, dass alle x>0 sind. insbesondere kannst du also statt mit |x-1| einfach mit x-1 rechnen, wie du ja auch geschrieben hast. bei x von unten gegen 0 müsstest du mit -(x-1) rechnen.
Mult. die Klammer aus, der 1. Summand sollte klar sein, für den zweiten L'Hopital, wenn ihr den hattet,
einfacher ist statt x gegen 0  y=1/x setzen und y gegen [mm] \infty [/mm]
Gruss leduart

Bezug
                
Bezug
Limes von oben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:02 Di 02.02.2010
Autor: peeetaaa

danke für die antwort...
also das heißt, dass ich für den limes von oben gegen x , eigl nicht für x die 0 einsetze um zu gucken was passiert sondern eig [mm] \infty [/mm]
und für den limes von unten gegen 0 setze ich ein minus vor das x und betrachte [mm] -\infty [/mm] oder was?

Bezug
                        
Bezug
Limes von oben: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Di 02.02.2010
Autor: XPatrickX


> danke für die antwort...
>  also das heißt, dass ich für den limes von oben gegen x
> , eigl nicht für x die 0 einsetze um zu gucken was
> passiert sondern eig [mm]\infty[/mm]
>  und für den limes von unten gegen 0 setze ich ein minus
> vor das x und betrachte [mm]-\infty[/mm] oder was?

Nein!!

Es ging hier nur um den Vorschlag, statt [mm] \lim_{x\to 0^+} [/mm] zu betrachten, jedes x durch die Folge 1/n zu ersetzen und dann [mm] n\to\infty [/mm] zu betrachten, denn 1/n ist eine Folge, die von oben gegen Null konvergiert.

Dieser Trick kann bei gewissen Problemen die Lösung vereinfachen.

Gruß Patrick


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]