matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Limes gegen unendlich u. Defin
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Limes gegen unendlich u. Defin
Limes gegen unendlich u. Defin < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes gegen unendlich u. Defin: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 03:30 Di 22.11.2011
Autor: Milde

Aufgabe
Lime gegen x/x-3
f. limes gegen Definitionslücke und Limes gegen unendlich

leider kann ich es nur über raten und einsatzen rausbringen
Es wäre schöne, wenn mir das jem. anhand dieses Beispieles
für beide Fälle erklären könnte
Danke

        
Bezug
Limes gegen unendlich u. Defin: Antwort
Status: (Antwort) fertig Status 
Datum: 06:35 Di 22.11.2011
Autor: fred97


> Lime gegen x/x-3
>  f. limes gegen Definitionslücke und Limes gegen
> unendlich
>  leider kann ich es nur über raten und einsatzen
> rausbringen
>  Es wäre schöne, wenn mir das jem. anhand dieses
> Beispieles
>  für beide Fälle erklären könnte
> Danke


[mm] $\limes_{x\rightarrow 3-0}\bruch{x}{x-3}= [/mm] - [mm] \infty$, [/mm] denn für 0<x<3 ist [mm] \bruch{x}{x-3}<0, [/mm] der Zähler von [mm] \bruch{x}{x-3} [/mm] strebt gegen 3 und der Nenner von [mm] \bruch{x}{x-3} [/mm] gegen 0.

[mm] $\limes_{x\rightarrow 3+0}\bruch{x}{x-3}= \infty$, [/mm] denn für x>3 ist [mm] \bruch{x}{x-3}>0, [/mm] der Zähler von [mm] \bruch{x}{x-3} [/mm] strebt gegen 3 und der Nenner von [mm] \bruch{x}{x-3} [/mm] gegen 0

[mm] \limes_{x\rightarrow\infty}\bruch{x}{x-3}= \limes_{x\rightarrow\infty}\bruch{1}{1-3/x}= [/mm] 1

FRED

Bezug
                
Bezug
Limes gegen unendlich u. Defin: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Di 22.11.2011
Autor: Milde

Ich verstehe nicht warum Sie gegen unendlich
anstatt x 1 einsetzen und dann durch x teilen
Gruß und Danke

Bezug
                        
Bezug
Limes gegen unendlich u. Defin: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Di 22.11.2011
Autor: mathfunnel

Hallo Milde!

> Ich verstehe nicht warum Sie gegen unendlich
>  anstatt x 1 einsetzen und dann durch x teilen
>  Gruß und Danke

Ich bin mir nicht ganz sicher, wie das 'warum' zu verstehen ist. Kann es sein, dass Du nicht verstehst, [mm] $\mathbf{was}$ [/mm] er macht?

Für [mm] $x\not\in \{0,3\}$ [/mm] gilt: [mm] $\bruch{x}{x-3} [/mm] = [mm] \bruch{x\cdot\frac{1}{x}}{(x-3)\cdot\frac{1}{x}} [/mm] = [mm] \bruch{1}{1-3/x}$ [/mm]

LG mathfunnel



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]