matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenLimes einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Limes einer Reihe
Limes einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 Fr 21.07.2006
Autor: dump_0

Aufgabe
Sei $f(x) = [mm] xe^x, [/mm] x [mm] \in \IR,$ [/mm] und sei [mm] $S_n [/mm] = [mm] \bruch{1}{n} \summe_{i=1}^{n} f(\bruch{2i - 1}{2n})$ [/mm]
Berechnen Sie $ [mm] \limes_{n\rightarrow\infty}S_n$. [/mm]

Nunja, leider komme ich mal wieder nicht weiter, ich hab nich recht ne Ahnung wie ich hier den Grenzwert berechnen soll.
Offensichtlich konvergiert zumind. die Folge [mm] $\bruch{2i - 1}{2n}$ [/mm] gegen 1 für entsprechenden großes festgelegtes n und größer werdendes i.
Muss ich hier erst Umformungen vornehmen, ich habe leider keinen Ansatz?


Grüße
[mm] dump_0 [/mm]

        
Bezug
Limes einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Fr 21.07.2006
Autor: Barncle

Versuchs mal mit den verschiedenen Kriterien.. Wurelkriterium, Quotientenkriterium... hab leider kein Skript da, sonst könnt ich dir besser helfen..

Bezug
        
Bezug
Limes einer Reihe: Tipp
Status: (Antwort) fertig Status 
Datum: 13:13 Fr 21.07.2006
Autor: banachella

Hallo!

Schau dir die Reihe mal genauer an und überleg dir, wofür sie eigentlich steht. Betrachte sie als Treppenfunktion! Zur Veranschaulichung hier ein Bildchen für $n=5$:
[Dateianhang nicht öffentlich]
Hast du jetzt eine Idee, wie du den Limes ausrechnen kannst?

Gruß, banachella

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Limes einer Reihe: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:51 Fr 21.07.2006
Autor: dump_0

Also $f(x)$ ist die Exp.fkt. nur halt mit dem Exponenten davor multipliziert.
Dieses x ist ja gerade das was in der Klammer in der Reihe steht und es wird ja immer und läuft schließlich gegen 1, also ist es am Ende die normale Exponentialfunktion bei entsprechend großen n. Die Treppenfunktion ist eig. auch einleuchtend.
Aber weiter weiß ich dann leider nicht mehr :(

Bezug
                        
Bezug
Limes einer Reihe: Integrale...
Status: (Antwort) fertig Status 
Datum: 17:33 Fr 21.07.2006
Autor: Gnometech

Gruß!

Habt ihr schon Integrale berechnet? Wenn ja, wie waren diese definiert? Was ist der Zusammenhang zwischen Integralen und Treppenfunktionen? Und was könnte das mit der vorliegenden Aufgabe zu tun haben?

Vielleicht helfen Dir diese Fragen auf die Sprünge... :-)

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]