matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenLimes berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Limes berechnen
Limes berechnen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes berechnen: Wie weitermachen?
Status: (Frage) beantwortet Status 
Datum: 16:08 So 07.04.2013
Autor: bandchef

Aufgabe
Folgern Sie, dass eine rekursive Implementierung zur Berechnung der Fibonacci-Zahlen die Lauftzeit $T(n) = [mm] \Theta\left(\frac{1+\sqrt{5}}{2}\right)$ [/mm] hat.



Hi Leute!

Ich hab ein Problem mit diesem Grenzwert. Die Funktion T(n) geht gegen unendlich. Das weiß man bei dieser Aufgabe, weil man das vorher beweisen sollte.

Wie aber muss ich hier nun weiter vorgehen, um den Grenzwert angeben zu können? Der l'Hospital sollte hier wohl nix bringen, weil die Variable n als Potenz im Zähler wie im Nenner mit diesem Satz hier nicht verschwinden wird!

        
Bezug
Limes berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 So 07.04.2013
Autor: M.Rex

Hallo

Forme mal um:

[mm] $\frac{2^n \cdot T(n)}{(1+\sqrt{5})^n}$ [/mm]

[mm] $=\frac{2^n}{(1+\sqrt{5})^n} \cdot [/mm] T(n)$

[mm] $=\left(\frac{2}{1+\sqrt{5}}\right)^n \cdot [/mm] T(n)$

Kommst du damit schon weiter?
Vielleicht hilft es wenn du beachtest, dass der Bruch [mm] \frac{2}{1+\sqrt{5}} [/mm] der Kehrwert des []Goldenen Schitts ist.

Marius

Bezug
                
Bezug
Limes berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 So 07.04.2013
Autor: bandchef

Danke für deine Antwort!

Ich hab's jetzt über die Definition der Potenz berechnet:

$...= [mm] \lim_{n \ to \infty}\left(\frac{e^{n\cdot ln(2)}\cdot T(n)}{e^{n\cdot ln(1+\sqrt{5})}}\right) [/mm] = ... = [mm] \lim_{n \to \infty} \left( e^{n\cdot \ln(2)} \cdot T(n)\right) \to \infty \cdot \infty \to \infty$ [/mm]

Passt das so?

Bezug
                        
Bezug
Limes berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 So 07.04.2013
Autor: Leopold_Gast

Nein, das paßt nicht. Wo ist denn der Nenner geblieben? Und was sollen die Pfeile am Ende bedeuten, wenn du doch das Limeszeichen hast? Grenzwerte "streben nicht". Grenzwerte "sind gleich".

[mm]\left( \frac{2}{1 + \sqrt{5}} \right)^n \cdot T(n)[/mm] ist für [mm]n \to \infty[/mm] ein unbestimmter Ausdruck vom Typ [mm]0 \cdot \infty[/mm]. Eine Aussage über seinen Grenzwert ist ohne nähere Kenntnis der Funktion [mm]T(n)[/mm] nicht möglich. Ist [mm]T(n)[/mm] vielleicht ein Polynom in [mm]n[/mm]?

Bezug
        
Bezug
Limes berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 So 07.04.2013
Autor: fred97


> Berechnen sie den Limes:
>  
> [mm]\lim_{n \to \infty}\left( \frac{2^n \cdot T(n)}{(1+\sqrt{5})^n} \right)[/mm]
>  
> Hi Leute!
>  
> Ich hab ein Problem mit diesem Grenzwert. Die Funktion T(n)
> geht gegen unendlich. Das weiß man bei dieser Aufgabe,
> weil man das vorher beweisen sollte.
>
> Wie aber muss ich hier nun weiter vorgehen, um den
> Grenzwert angeben zu können? Der l'Hospital sollte hier
> wohl nix bringen, weil die Variable n als Potenz im Zähler
> wie im Nenner mit diesem Satz hier nicht verschwinden wird!


Du hast also die Folge [mm] (a_n) [/mm] mit

[mm] $a_n=\left(\frac{2}{1+\sqrt{5}}\right)^n \cdot [/mm] T(n).$

Der Faktor [mm] \left(\frac{2}{1+\sqrt{5}}\right)^n [/mm] geht gegen 0 für n [mm] \to \infty [/mm] (warum ?).

Solange wir überdas Wachstumverhalten von T(n) nix wissen, können wir über das Verhalten von [mm] (a_n) [/mm] gar nix aussagen.


Beispiele:

1. ist [mm] T(n)=(\left(\frac{2}{1+\sqrt{5}}\right)^n)^{-1}, [/mm] so strebt [mm] (a_n) [/mm] gegen 1

2. ist [mm] T(n)=9^n, [/mm] so strebt [mm] (a_n) [/mm] gegen [mm] \infty. [/mm]

3. ist 1<q [mm] <(\frac{2}{1+\sqrt{5}})^{-1} [/mm] und [mm] T(n)=q^n, [/mm] so strebt [mm] (a_n) [/mm] gegen 0.

FRED


Bezug
                
Bezug
Limes berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:35 So 07.04.2013
Autor: bandchef

Hm, da steht jetzt noch, dass: Folgern Sie, dass eine rekursive Implementierung zur Berechnung der Fibonacci-Zahlen die Lauftzeit $T(n) = [mm] \Theta\left(\frac{1+\sqrt{5}}{2}\right)$ [/mm] hat.

Da doch die Laufzeit der Fibonacci-Zahlen insbesondere wenn man sie rekursiv berechnen lässt gegen unendlich strebt, hab ich doch die Aussage die dir gefehlt hat, oder? T(n) strebt gegen unendlich!

Bezug
                        
Bezug
Limes berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 So 07.04.2013
Autor: kaju35

Hallo Bandchef,

ich verstehe das so : Eine rekursive Implementierung zur
Berechnung der Fibonacci-Zahlen dauert $T(n)=T(n-1)+T(n-2)$.

Um den n-ten Wert zu berechnen, muss ich zuerst die ersten
n-1 Werte plus die ersten n-2 Werte auswerten.

(Stimmt doch, oder?)

Das entspricht aber gerade der Definition der Fibonacci-Folge.

Diese lässt sich umschreiben als [mm] $F(n)=\frac{1}{\sqrt{5}}\cdot\left(\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n\right)$. [/mm]

Für [mm] $n\to\infty$ [/mm] geht [mm] $\left(\frac{1-\sqrt{5}}{2}\right)^n$ [/mm] gegen 0 und ist
somit zu vernachlässigen.

Ebenso ist der Faktor [mm] $\frac{1}{\sqrt{5}}$ [/mm] in der Landau-Notation
zu vernachlässigen.

Es bleibt also [mm] $T(n)=\Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right)$ [/mm]

Gruß
Kai

Bezug
        
Bezug
Limes berechnen: Aufgabenänderung!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 So 07.04.2013
Autor: bandchef

Ich musste leider den Aufgabentext ändern weil ich nicht richtig gelesen habe. Entschuldigt bitte!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]