matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenLimes
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Limes
Limes < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Mo 09.02.2009
Autor: waruna

Zeigen Sie: für alle k [mm] \in [/mm] N, z [mm] \in [/mm] C mit |z| > 1 gilt:

[mm] \lim_{n\rightarrow\infty}\bruch{n^{k}}{z^{n}}=0 [/mm]

Ich weiss, dass man binomischen Satz benutzen muss, aber wie genau, konnte ich nicht ausdenken.

Kleiner Hinweis wird bestimmt helfen :).  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Limes: Tipp
Status: (Antwort) fertig Status 
Datum: 00:24 Di 10.02.2009
Autor: Loddar

Hallo waruna!


Ersetze im Nenner $z \ := \ [mm] r*\left[\cos(\varphi)+i*\sin(\varphi)\right]$ [/mm] bzw. gemäß MBMoivre-Formel [mm] $z^n [/mm] \ = \ [mm] r^n*\left[\cos(n*\varphi)+i*\sin(n*\varphi)\right]$ [/mm] .

Anschließend den Bruch zerlegen ...


Gruß
Loddar


Bezug
                
Bezug
Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:48 Di 10.02.2009
Autor: waruna

Ich habe also sowas ausgedacht:

Ich werde zeigen, dass    

[tex]n^{k}/r^{n}[/tex] gegen 0 konvergieren, und weil diese Reste mit sin und cos konwergiert nicht (lim ex. nicht), ein Produnkt geht auch gegen 0.
Das kann man zeigen, wenn man nutzt: [tex]n^{k} = e^{klogn}[/tex].

Darf man so machen?


Bezug
                        
Bezug
Limes: vorrechnen!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:07 Di 10.02.2009
Autor: Loddar

Hallo waruna!


Da kann ich Dir gerade leider nicht ganz folgen ... bitte rechen das doch mal vor, wie Du das meinst.


Gruß
Loddar


Bezug
        
Bezug
Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Di 10.02.2009
Autor: fred97

Setze [mm] a_n [/mm] = [mm] \bruch{n^k}{z^n}. [/mm]

Dann:  [mm] \wurzel[n]{|a_n|} [/mm] = [mm] \bruch{(\wurzel[n]{n})^k}{|z|} [/mm] --> [mm] \bruch{1}{|z|} [/mm] <1

Nach dem Wurzelkriterium ist   [mm] \summe_{n=1}^{\infty}a_n [/mm]  konvergent, also ist [mm] (a_n) [/mm] eine Nullfolge.

FRED

Bezug
                
Bezug
Limes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:08 Di 10.02.2009
Autor: angela.h.b.

Moin,

das find' ich in seiner Einfachheit so richtig raffiniert.

Gruß v. Angela

Bezug
                        
Bezug
Limes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:16 Di 10.02.2009
Autor: fred97


> Moin,
>  
> das find' ich in seiner Einfachheit so richtig raffiniert.
>  
> Gruß v. Angela


Moin, moin

Danke

Gruß FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]