matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenLimes
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Limes
Limes < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 So 30.11.2008
Autor: Palonina

Aufgabe
Man untersuche, ob die folgenden Limites existieren und ermittele gegebenenfalls ihre [mm] Werte\\ [/mm]
[mm] (a) $\lim_{x\rightarrow 1} \frac{x^n-1}{x^m-1} [/mm] , mit [mm] \;m,n \in \IN, [/mm] m [mm] \geq1, [/mm] n [mm] \geq1$\\\\ [/mm]
[mm] (b) $\lim_{z\rightarrow 1} \frac{1}{z-1}(\frac{ 3}{z^2+5}-\frac{ 1}{z^2+1})$\\\\ [/mm]

[mm] (c) $\lim_{x\rightarrow 0, x>0} \frac{\sqrt{1+\frac{1}{x}}-\sqrt{\frac{1}{x}}}{\sqrt{x}}$ [/mm]

Hallo,
mit Aufgabe a) habe ich mich erst schwer getan, bin dann aber auf den Ansatz

[mm] $a^n [/mm] - [mm] b^n [/mm] = (a-b) [mm] \sum_{k=0}^{n-1} a^k b^{n-1-k}$ [/mm]

gestoßen. Damit ergibt sich hier

[mm] $\frac{x^n-1^n}{x^m-1^n} ={\frac{x-1}{x-1}} {\frac{\sum^{n-1}_{k=0}x^k 1^{n-1-k}}{\sum^{m-1}_{l=0}x^l b^{m-1-l}}} [/mm] $

Und
[mm] $\lim_{x\rightarrow 1}\frac{x^n-1}{x^m-1} [/mm] = [mm] \frac{\sum^{n-1}_{k=0}1}{\sum^{m-1}_{l=0}1} [/mm] = [mm] \frac{n-1}{m-1}$ [/mm]

Kann ich das so machen?

Aufgabenteil b) fand ich recht einfach, ich habe die Brüche auf einen Nenner gebracht, konnte dann $(x-1)$ herauskürzen und den Grenzwert ausrechnen.

Leider schaffe ich es bei c) aber nicht, durch Erweitern mithilfe der 3. Binomischen Formel o.ä. den Ausdruck so weit umzuformen, dass ich 0 einsetzen kann. Ich erhalte z.B. [mm] $\frac{\sqrt{x+1}+1}{x}$. [/mm]
Vielleicht kann mir jemand von euch einen Tipp geben.

Vielen Dank,
Palonina


        
Bezug
Limes: zu Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 09:14 Mo 01.12.2008
Autor: Loddar

Hallo Palonina!


Dein Weg ist sehr gut und elegant. Allerdings hast Du Dich ganz am Ende "verzählt".

Es muss heißen:
[mm] $$\lim_{x\rightarrow 1}\frac{x^n-1}{x^m-1} [/mm] = [mm] \frac{\sum^{n-1}_{k=0}1}{\sum^{m-1}_{l=0}1} [/mm] = [mm] \frac{\red{n}}{\red{m}}$$ [/mm]

Gruß
Loddar


Bezug
        
Bezug
Limes: (c)
Status: (Antwort) fertig Status 
Datum: 09:35 Mo 01.12.2008
Autor: schachuzipus

Hallo Palonina,

hmm, deine Idee in (c) ist genau richtig, aber ich komme auf einen anderen Ausdruck nach dem Erweitern, in dem man wunderbar [mm] $x\to [/mm] 0$ betrachten kann:

[mm] $\frac{\sqrt{1+\frac{1}{x}}-\sqrt{\frac{1}{x}}}{\sqrt{x}}=\frac{\left(\sqrt{1+\frac{1}{x}}-\sqrt{\frac{1}{x}}\right)\cdot{}\blue{\left(\sqrt{1+\frac{1}{x}}+\sqrt{\frac{1}{x}}\right)}}{\sqrt{x}\cdot{}\blue{\left(\sqrt{1+\frac{1}{x}}+\sqrt{\frac{1}{x}}\right)}}=\frac{1+\frac{1}{x}-\frac{1}{x}}{\sqrt{x+1}+\sqrt{1}}=\frac{1}{\sqrt{x+1}+1}$ [/mm]


LG

schachuzipus

Bezug
        
Bezug
Limes: zu Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 09:53 Mo 01.12.2008
Autor: Loddar

Hallo Polonina!


Deine Vorgehensweise klingt gut und richtig. [ok]


Gruß
Loddar


Bezug
                
Bezug
Limes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:49 Mo 01.12.2008
Autor: Palonina

Hallo Loddar, hallo schachuzipus,

ich danke euch für eure Korrekturen. Wenn die Summation bei 0 beginnt, habe ich natürlich n, bzw. m Summanden. Und dann dieser dumme Vorzeichenfehler.

Gruß,
Palonina

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]