matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenLimes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Limes
Limes < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes: Tip
Status: (Frage) beantwortet Status 
Datum: 22:28 Do 08.12.2005
Autor: Sinus

Hallo,

ich soll Folgendes zeigen:

[mm] \limes_{n\rightarrow\infty} \wurzel[n]{n}=1 [/mm]

Folgendes habe ich nun versucht:

[mm] |\wurzel[n]{n}-1|=n^{ \bruch{1}{n}}-1| [/mm] aber ich komme einfach nicht weiter. Der binomische Lehrsatz soll mir helfen, aber irgendwie weiß ich nicht, wie ich den anwenden soll.

Danke für eure Hilfe.

Sinus


        
Bezug
Limes: url
Status: (Antwort) fertig Status 
Datum: 01:13 Fr 09.12.2005
Autor: leduart

Hallo sinus
sieh hier nach :
hier
gruss leduart

Bezug
        
Bezug
Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 01:37 Fr 09.12.2005
Autor: R4ph43l

Hier der Lösungsweg:

Zeige zuerst dass $ [mm] \wurzel[n]{n} [/mm] > 1 [mm] \forall [/mm] n $.
Dann fällt der Betrag weg und du willst zeigen dass $ [mm] \wurzel[n]{n} [/mm] - 1 < [mm] \varepsilon [/mm] $ ab einem großen n, also setzen wir doch mal gleich und sehen: $ [mm] \wurzel[n]{n} [/mm] = 1 + [mm] \varepsilon \gdw [/mm] n = [mm] (1+\varepsilon)^n \ge [/mm] 1 + [mm] n\varepsilon [/mm] $ (Bernoulli)
Jetzt lässt sich doch leicht zu jedem [mm] \varepsilon [/mm] ein N finden so dass für alle n > N der Term $ [mm] \wurzel[n]{n} [/mm] - 1 < [mm] \varepsilon [/mm] $ ist.

Bezug
                
Bezug
Limes: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:59 Fr 09.12.2005
Autor: Sinus

Hallo Leduart und R4ph43I,

ich danke euch für eure Hilfe. Mit deinem url (Leduart) konnte ich leider nicht viel anfangen.

Wie soll ich denn zuerst zeigen, dass

[mm] \wurzel[n]{n}>1 [/mm] für alle n ist
und wieso setzt du dann  [mm] \wurzel[n]{n}=1+ \varepsilon [/mm] Ich habe doch eine Ungleichung mit   [mm] |\wurzel[n]{n}-1|<\varepsilon [/mm]

Ich verstehe das leider nicht.

Grüße, Sinus

Bezug
                        
Bezug
Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Fr 09.12.2005
Autor: Julius

Hallo Sinus!

Für alle $n [mm] \in \IN$ [/mm] gilt:

[mm] $\sqrt[n]{n}-1 \ge \sqrt[n]{1}-1 [/mm] = 1-1 = 0$.

Es genügt also zu beweisen, dass es für alle [mm] $\varepsilon>0$ [/mm] ein [mm] $N_0(\varepsilon)>0$ [/mm] gibt, so dass für alle $n [mm] \ge N_0$ [/mm] gilt:

[mm] $\sqrt[n]{n} [/mm] - 1 < [mm] \varepsilon$. [/mm]

Nun gilt aber für alle [mm] $n\ge N_0(\varepsilon):=\left[ \frac{2}{\varepsilon^2} + 1\right]+1 \ge \frac{2}{\varepsilon^2} [/mm] +1$:

$(1+ [mm] \varepsilon)^n [/mm] > 1+ [mm] n\varepsilon [/mm] + [mm] \frac{n(n-1)}{2} \varepsilon^2 [/mm] > [mm] \frac{n(n-1)}{2} \cdot \varepsilon^2 [/mm] > n$,

also:

$n < (1 + [mm] \varepsilon)^n$. [/mm]

Daraus folgt nach Umformung:

[mm] $\sqrt[n]{n} [/mm] - 1 < [mm] \varepsilon$. [/mm]

Dies ist genau der Beweis, den leduart im anderen Post (mehr als) angedeutet hatte.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]