matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationLim O-/U-Summe berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Lim O-/U-Summe berechnen
Lim O-/U-Summe berechnen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lim O-/U-Summe berechnen: Zerlegungsnullfolge, Obersumme
Status: (Frage) beantwortet Status 
Datum: 09:48 Do 17.10.2013
Autor: Kartoffelchen

Aufgabe
Berechnen Sie das Integral [mm] $\int_0^1 x^2 [/mm] dx  $ mit Hilfe der Zerlegungsnullfolge [mm] $Z_n$. [/mm]
Berechnen Sie dazu den Grenzwert der Ober- und Untersumme


Ich bitte um Korrektur & Hinweise bzgl. der Korrektheit :)
[Diese Aufgabe/Frage wurde von mir in keinem anderen Forum gestellt]
_______________________________

Die Zerlegung lautet $ [mm] Z_n [/mm] : a = [mm] x_0 [/mm] < [mm] x_1 [/mm] < ... < [mm] x_n [/mm] = b $ mit den Teilintervallen $ [mm] I_k [/mm] = [mm] [x_{k-1}, x_{k}] [/mm] $.

Es gilt:

Breite (= Länge von [mm] $I_k$) [/mm] = [mm] $\Delta x_k [/mm] = [mm] x_k [/mm] - [mm] x_{k-1} [/mm] = [mm] \frac{k}{n} [/mm] - [mm] \frac{k-1}{n} [/mm] = [mm] \frac{1}{n}$ [/mm]

Höhen:
[mm] $m_k [/mm] := inf [mm] f(I_k) \to m_k [/mm] = [mm] f(x_{k-1}) [/mm] = [mm] (x_{k-1})^2 [/mm] = [mm] (\frac{k-1}{n})^2$ [/mm]
und
[mm] $M_k [/mm] := sup [mm] f(I_k) \to M_k [/mm] = [mm] f(x_k) [/mm] = [mm] (x_k)^2 [/mm] = [mm] (\frac{k}{n})^2$ [/mm]

Begründung: Da das Intervall [0, 1] in n gleichgroße Intervalle geteilt werden sollte gibt es insgesamt n+1 x-Werte (nämlich 0, 1/n, 2/n, ..., n/n). << stimmt das so?

Obersumme:
$O = [mm] \sum_{k=1}^n (M_k [/mm] * [mm] \Delta x_k) [/mm] = [mm] \sum_{k=1}^n (\frac{k}{n})^2 [/mm] * 1/n = [mm] \frac{1}{n^3} [/mm] * [mm] \frac{n(n+1)(2n+1)}{6} [/mm] = [mm] \frac{2n^2+3n+1}{6n^2} [/mm] $

Grenzwert der Obersumme:
Für $n [mm] \to \infty$ [/mm] folgt: $lim O = 1/3$

Untersumme:
U = [mm] \sum_{k=1}^n (m_k [/mm] * [mm] \Delta x_k) [/mm] = [mm] \sum_{k=1}^n (\frac{k-1}{n})^2 [/mm] * 1/n = [mm] \frac{1}{n^3} [/mm] * ( [mm] \sum_{k=1}^n (k^2) [/mm] - [mm] n^2 [/mm] + [mm] 0^2 [/mm] ) = [mm] \frac{1}{n^3} [/mm] * ( [mm] \frac{n(n+1)(2n+1)}{6} [/mm] - [mm] n^2) [/mm]

Grenzwert der Untersumme:
Für $n [mm] \to \infty$ [/mm] folgt: $lim U = 1/3$ (denn [mm] n^2/n^3 [/mm] = 1/n, was ebenfalls gegen 0 strebt; der Rest entspricht der Obersumme).

__________________________

Ich habe natürlich bewusst etwas ausführlicher geschrieben, damit evtl. Fehler gleich bemerkt werden :)

Vielen Dank auch im Voraus, wenn sich jemand findet, der da drüber schauen kann und möchte :)

        
Bezug
Lim O-/U-Summe berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:52 Do 17.10.2013
Autor: fred97


> Berechnen Sie das Integral [mm]\int_0^1 x^2 dx [/mm] mit Hilfe der
> Zerlegungsnullfolge [mm]Z_n[/mm].
>  Berechnen Sie dazu den Grenzwert der Ober- und Untersumme
>  
> Ich bitte um Korrektur & Hinweise bzgl. der Korrektheit :)
>  [Diese Aufgabe/Frage wurde von mir in keinem anderen Forum
> gestellt]
>  _______________________________
>  
> Die Zerlegung lautet [mm]Z_n : a = x_0 < x_1 < ... < x_n = b[/mm]
> mit den Teilintervallen [mm]I_k = [x_{k-1}, x_{k}] [/mm].
>  
> Es gilt:
>  
> Breite (= Länge von [mm]I_k[/mm]) = [mm]\Delta x_k = x_k - x_{k-1} = \frac{k}{n} - \frac{k-1}{n} = \frac{1}{n}[/mm]
>  
> Höhen:
> [mm]m_k := inf f(I_k) \to m_k = f(x_{k-1}) = (x_{k-1})^2 = (\frac{k-1}{n})^2[/mm]
>  
> und
>  [mm]M_k := sup f(I_k) \to M_k = f(x_k) = (x_k)^2 = (\frac{k}{n})^2[/mm]
>  
> Begründung: Da das Intervall [0, 1] in n gleichgroße
> Intervalle geteilt werden sollte gibt es insgesamt n+1
> x-Werte (nämlich 0, 1/n, 2/n, ..., n/n). << stimmt das
> so?
>  
> Obersumme:
>  [mm]O = \sum_{k=1}^n (M_k * \Delta x_k) = \sum_{k=1}^n (\frac{k}{n})^2 * 1/n = \frac{1}{n^3} * \frac{n(n+1)(2n+1)}{6} = \frac{2n^2+3n+1}{6n^2}[/mm]
>  
> Grenzwert der Obersumme:
>  Für [mm]n \to \infty[/mm] folgt: [mm]lim O = 1/3[/mm]
>
> Untersumme:
>  U = [mm]\sum_{k=1}^n (m_k[/mm] * [mm]\Delta x_k)[/mm] = [mm]\sum_{k=1}^n (\frac{k-1}{n})^2[/mm]
> * 1/n = [mm]\frac{1}{n^3}[/mm] * ( [mm]\sum_{k=1}^n (k^2)[/mm] - [mm]n^2[/mm] + [mm]0^2[/mm] )
> = [mm]\frac{1}{n^3}[/mm] * ( [mm]\frac{n(n+1)(2n+1)}{6}[/mm] - [mm]n^2)[/mm]
>  
> Grenzwert der Untersumme:
>  Für [mm]n \to \infty[/mm] folgt: [mm]lim U = 1/3[/mm] (denn [mm]n^2/n^3[/mm] = 1/n,
> was ebenfalls gegen 0 strebt; der Rest entspricht der
> Obersumme).
>  
> __________________________
>  
> Ich habe natürlich bewusst etwas ausführlicher
> geschrieben, damit evtl. Fehler gleich bemerkt werden :)

Alles bestens !

FRED

>  
> Vielen Dank auch im Voraus, wenn sich jemand findet, der da
> drüber schauen kann und möchte :)


Bezug
                
Bezug
Lim O-/U-Summe berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Do 17.10.2013
Autor: Kartoffelchen

Hallo und vielen Dank!

Jetzt ist mir doch noch eine Frage zur Aufgabe eingefallen:

Angenommen es würde um das Integral von 0 bis 3 (statt 0 bis 1) gehen:

Breite (= Länge von $ [mm] I_k [/mm] $) = $ [mm] \Delta x_k [/mm] = [mm] x_k [/mm] - [mm] x_{k-1} [/mm] = [mm] \frac{k}{n} [/mm] - [mm] \frac{k-1}{n} [/mm] = [mm] \frac{1}{n} [/mm] - stimmt das dann auch hier? Es sollten ja eigentlich 3/n sein, nicht wahr?

Ich müsste somit $ (b-a)/n $ berechnen, also $ (3-0)/n = 3/n$

Ich sitze (steht/liege) bestimmt mal wieder auf dem Schlauch :)

Bezug
                        
Bezug
Lim O-/U-Summe berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Do 17.10.2013
Autor: Diophant

Hallo,

> Jetzt ist mir doch noch eine Frage zur Aufgabe
> eingefallen:

>

> Angenommen es würde um das Integral von 0 bis 3 (statt 0
> bis 1) gehen:

>

> Breite (= Länge von [mm] [mm]I_k[/mm] [/mm]) = $ [mm]\Delta x_k[/mm] = [mm]x_k[/mm] -
> [mm]x_{k-1}[/mm] = [mm]\frac{k}{n}[/mm] - [mm]\frac{k-1}{n}[/mm] = [mm]\frac{1}{n}[/mm] -
> stimmt das dann auch hier? Es sollten ja eigentlich 3/n
> sein, nicht wahr?

>

> Ich müsste somit [mm](b-a)/n[/mm] berechnen, also [mm](3-0)/n = 3/n[/mm]

>

> Ich sitze (steht/liege) bestimmt mal wieder auf dem
> Schlauch :)

Wenn du an Stelle von k 3k und an Stelle von k-1 3(k-1) nimmst, dann passt das mit den 3/n. :-)

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]