matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteLgs mit Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Skalarprodukte" - Lgs mit Vektoren
Lgs mit Vektoren < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lgs mit Vektoren: Berechnung
Status: (Frage) beantwortet Status 
Datum: 18:11 So 09.01.2011
Autor: Masseltof

Aufgabe
Gegeben seien die Vektoren [mm] r_{1}=\vektor{8 \\ 5 \\ 12} [/mm] und [mm] r_{2}=\vektor{9 \\ x \\ -6}. [/mm] Berechnen Sie x, sodass [mm] r_{1} [/mm] orthogonal zu [mm] r_{2} [/mm] steht.

Hallo.
Ich soll die oben beschriebene Aufgabe machen und mein Ansatz ist folgender:

Orthogonal sind 2 Vektoren, sobald der Winkel zwischen Ihnen 90° beträgt.
Das heißt, dass in diesem Moment cos(90°)=0 ist.

Nun kann man dazu das Skalarprodukt berechnen:

[mm] \vec{r_{1}}*\vec{r_{2}}*cos(\alpha)=|\vec{r_{1}}|*|\vec{r_{2}}| [/mm]

Daraus folgt:
[mm] cos(\alpha)= \bruch{|\vec{r_{1}}|*|\vec{r_{2}}|}{\vec{r_{1}}*\vec_{r_{2}}} [/mm]

Das heißt, dass der Zähler 0 sein muss, sodass man 0 erhält.

Daraus folgt:

[mm] |\vec{r_{1}}|*|\vec{r_{2}}|=9*8+5x-6*12=0 [/mm]
[mm] \Rightarrow [/mm] x=0

Sind meine Gedanken und Rechenwege korrekt?

Viele Grüße und danke im Voraus :=)

        
Bezug
Lgs mit Vektoren: richtig
Status: (Antwort) fertig Status 
Datum: 18:21 So 09.01.2011
Autor: Loddar

Hallo Masseltof!


Allet chic. [daumenhoch]


Gruß
Loddar


Bezug
                
Bezug
Lgs mit Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 Di 11.01.2011
Autor: Masseltof

Hallo und danke für die Antwort.

Ich war etwas verwundert, dachte ich doch mein Beitrag wäre schon untergegangen :).

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]