matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesLeibnizkriterium Summe entw.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Leibnizkriterium Summe entw.
Leibnizkriterium Summe entw. < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leibnizkriterium Summe entw.: Summe entwickeln!
Status: (Frage) beantwortet Status 
Datum: 12:21 Mi 17.03.2010
Autor: Kerberos2008

Aufgabe
Aufgabe 7
b)
Für |x|<1 gilt bekanntlich ln(1+x) = [mm] \summe_{k=1}^{\infty} (-1)^{k-1} \bruch{1}{k} *x^k. [/mm]
Berechnen Sie mit den ersten 4 Summanden einen Näherungswert für [mm] ln(\bruch{3}{2}), [/mm] und bestimmen Sie die Differenz zu dem Wert von [mm] ln(\bruch{3}{2}), [/mm] den ein Taschenrechner liefert.

Bestimmen Sie ein N, so dass für x = [mm] \bruch{1}{2} [/mm] und jedes n [mm] \ge [/mm] N gilt |ln(1+x) - [mm] \summe_{k=1}^{n} (-1)^{k-1} \bruch{1}{k} *x^k| \le 10^{-6} [/mm]




b)
|x|<1
ln(1+x) = [mm] \summe_{k=1}^{\infty} (-1)^{k-1} \bruch{1}{k} *x^k [/mm]

Vier Summanden ermitteln und Näherungswert für [mm] ln(\bruch{3}{2}) [/mm] ermitteln!

Die Summe durch einsetzen bestimmen:

[mm] \summe_{k=1}^{4} (-1)^{k-1} \bruch{1}{k} *x^k [/mm]


1 + [mm] (-1)^{1-1} [/mm] * [mm] \bruch{1}{1} [/mm] * [mm] (\bruch{3}{2})^1 [/mm] + [mm] (-1)^{2-1} [/mm] * [mm] \bruch{1}{2} [/mm] * [mm] (\bruch{3}{2})^2 [/mm] + [mm] (-1)^{3-1} [/mm] * [mm] \bruch{1}{3} [/mm] * [mm] (\bruch{3}{2})^3 [/mm] + [mm] (-1)^{4-1} [/mm] * [mm] \bruch{1}{4} [/mm] * [mm] (\bruch{3}{2})^4 [/mm] + ...


1 + [mm] 1*1*\bruch{3}{2}-1*\bruch{1}{2}*(\bruch{3}{2})^2+1*\bruch{1}{3}*(\bruch{3}{2})^3-1*\bruch{1}{4}*(\bruch{3}{2})^4 [/mm]


1 + [mm] \bruch{3}{2} [/mm] - [mm] \bruch{1}{2} [/mm] * [mm] \bruch{9}{4} [/mm] + [mm] \bruch{1}{3} [/mm] * [mm] \bruch{27}{8} [/mm] - [mm] \bruch{1}{4} [/mm] * [mm] \bruch{81}{16} [/mm]


1 + [mm] \bruch{3}{2} [/mm] - [mm] \bruch{9}{8} [/mm] + [mm] \bruch{27}{24} [/mm] - [mm] \bruch{81}{64} [/mm]

So, ist diese Entwicklung der Summe soweit richtig ?

Oder muß ich dort noch das ln mit einbringen ?

z.B. so ?: 1 + [mm] (-1)^{1-1} [/mm] * [mm] ln(\bruch{1}{1} [/mm] * [mm] (\bruch{3}{2})^1) [/mm] + ...


Als erste vier Summanden würde sich nun folgendes ergeben:

1 + [mm] \bruch{3}{2} [/mm] - [mm] \bruch{9}{8} [/mm] + [mm] \bruch{27}{24} [/mm] = 2,5

Dieser Wert ist doch recht hoch!
Die "1 +" muß doch verwendet werden oder habe ich hier einen Fehler gemacht?

Nutze ich folgendes: [mm] \bruch{3}{2} [/mm] - [mm] \bruch{9}{8} [/mm] + [mm] \bruch{27}{24} [/mm] - [mm] \bruch{81}{64} [/mm] = 0,234375

kommt ein Wert heraus, der näher an dem Taschenrechnerergebnis liegt: [mm] ln(\bruch{3}{2}) [/mm] = 0,4054651081

Die Differenz bei: [mm] \bruch{5}{2} [/mm] - [mm] ln(\bruch{3}{2}) \approx [/mm] 2,0945
von: [mm] \bruch{15}{64} [/mm] - [mm] ln(\bruch{3}{2}) \approx [/mm] -0,1710901081



2. Teil:

Bestimmen Sie ein N, so dass für x = [mm] \bruch{1}{2} [/mm] und jedes n [mm] \ge [/mm] N gilt:

[mm] \varepsilon [/mm] = [mm] 10^{-6} [/mm]

| ln(1+x) - [mm] \summe_{k=1}^{n} (-1)^{k-1} \bruch{1}{k} *x^k| \le b_{k+1} \le \varepsilon [/mm]

Muß ich hier nun noch eine neue Summe erzeugen für x = [mm] \bruch{1}{2}? [/mm]

z.B.: 1 + [mm] (-1)^{1-1} [/mm] * [mm] \bruch{1}{1} [/mm] * [mm] (\bruch{1}{2})^1 [/mm] + [mm] (-1)^{2-1} [/mm] * [mm] \bruch{1}{2} [/mm] * [mm] (\bruch{1}{2})^2 [/mm] + [mm] (-1)^{3-1} [/mm] * [mm] \bruch{1}{3} [/mm] * [mm] (\bruch{1}{2})^3 [/mm] + [mm] (-1)^{4-1} [/mm] * [mm] \bruch{1}{4} [/mm] * [mm] (\bruch{1}{2})^4 [/mm] + ...

Nun würde ich wie ich es in anderen Aufgaben schon gemacht habe nach folgendem Muster vorgehen wollen:

[mm] |b_{k+1}| \le \varepsilon [/mm]

Müßte ich hier dann einfach etwas annehmen und dann den Rest bestimmen ?
z.B.: | ln(1+x) - 1 + [mm] (-1)^{1-1} [/mm] * [mm] \bruch{1}{1} [/mm] * [mm] (\bruch{1}{2})^1 [/mm] + [mm] (-1)^{2-1} [/mm] * [mm] \bruch{1}{2} [/mm] * [mm] (\bruch{1}{2})^2 [/mm] + [mm] (-1)^{3-1} [/mm] * [mm] \bruch{1}{3} [/mm] * [mm] (\bruch{1}{2})^3 [/mm] |

Somit würde ich den nächsten Term nehmen und als:
[mm] b_{k+1} [/mm] = [mm] (-1)^{4-1} [/mm] * [mm] \bruch{1}{4} [/mm] * [mm] (x)^4 [/mm]
nutzen und alles nach x umstellen!
Um den Restfehler zu ermitteln!

Wären beide Lösungsansätze richtig ?
Habe ich noch Fehler gemacht ?


Danke im Vorraus für eure Hilfe :)



----------

Ich habe diese Aufgabe niergens anders gestellt


        
Bezug
Leibnizkriterium Summe entw.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Mi 17.03.2010
Autor: angela.h.b.


> Aufgabe 7
>  b)
>  Für |x|<1 gilt bekanntlich ln(1+x) =
> [mm]\summe_{k=1}^{\infty} (-1)^{k-1} \bruch{1}{k} *x^k.[/mm]
>  
> Berechnen Sie mit den ersten 4 Summanden einen
> Näherungswert für [mm]ln(\bruch{3}{2}),[/mm]


Hallo,

dann mußt Du doch x=1/2 nehmen!

Zur Abschätzung: Taylorreihe und Restglied waren dran?
Damit würde ich's versuchen. Taschenrechnergetippsel ist wohl eher nicht gemeint.

Gruß v. Angela



und bestimmen Sie die

> Differenz zu dem Wert von [mm]ln(\bruch{3}{2}),[/mm] den ein
> Taschenrechner liefert.
>  
> Bestimmen Sie ein N, so dass für x = [mm]\bruch{1}{2}[/mm] und
> jedes n [mm]\ge[/mm] N gilt |ln(1+x) - [mm]\summe_{k=1}^{n} (-1)^{k-1} \bruch{1}{k} *x^k| \le 10^{-6}[/mm]
>  
>
>
>
> b)
> |x|<1
> ln(1+x) = [mm]\summe_{k=1}^{\infty} (-1)^{k-1} \bruch{1}{k} *x^k[/mm]
>  
> Vier Summanden ermitteln und Näherungswert für
> [mm]ln(\bruch{3}{2})[/mm] ermitteln!
>  
> Die Summe durch einsetzen bestimmen:
>  
> [mm]\summe_{k=1}^{4} (-1)^{k-1} \bruch{1}{k} *x^k[/mm]
>  
>
> 1 + [mm](-1)^{1-1}[/mm] * [mm]\bruch{1}{1}[/mm] * [mm](\bruch{3}{2})^1[/mm] +
> [mm](-1)^{2-1}[/mm] * [mm]\bruch{1}{2}[/mm] * [mm](\bruch{3}{2})^2[/mm] + [mm](-1)^{3-1}[/mm] *
> [mm]\bruch{1}{3}[/mm] * [mm](\bruch{3}{2})^3[/mm] + [mm](-1)^{4-1}[/mm] * [mm]\bruch{1}{4}[/mm]
> * [mm](\bruch{3}{2})^4[/mm] + ...
>  
>
> 1 +
> [mm]1*1*\bruch{3}{2}-1*\bruch{1}{2}*(\bruch{3}{2})^2+1*\bruch{1}{3}*(\bruch{3}{2})^3-1*\bruch{1}{4}*(\bruch{3}{2})^4[/mm]
>  
>
> 1 + [mm]\bruch{3}{2}[/mm] - [mm]\bruch{1}{2}[/mm] * [mm]\bruch{9}{4}[/mm] +
> [mm]\bruch{1}{3}[/mm] * [mm]\bruch{27}{8}[/mm] - [mm]\bruch{1}{4}[/mm] *
> [mm]\bruch{81}{16}[/mm]
>  
>
> 1 + [mm]\bruch{3}{2}[/mm] - [mm]\bruch{9}{8}[/mm] + [mm]\bruch{27}{24}[/mm] -
> [mm]\bruch{81}{64}[/mm]
>  
> So, ist diese Entwicklung der Summe soweit richtig ?
>  
> Oder muß ich dort noch das ln mit einbringen ?
>  
> z.B. so ?: 1 + [mm](-1)^{1-1}[/mm] * [mm]ln(\bruch{1}{1}[/mm] *
> [mm](\bruch{3}{2})^1)[/mm] + ...
>
>
> Als erste vier Summanden würde sich nun folgendes
> ergeben:
>  
> 1 + [mm]\bruch{3}{2}[/mm] - [mm]\bruch{9}{8}[/mm] + [mm]\bruch{27}{24}[/mm] = 2,5
>  
> Dieser Wert ist doch recht hoch!
>  Die "1 +" muß doch verwendet werden oder habe ich hier
> einen Fehler gemacht?
>  
> Nutze ich folgendes: [mm]\bruch{3}{2}[/mm] - [mm]\bruch{9}{8}[/mm] +
> [mm]\bruch{27}{24}[/mm] - [mm]\bruch{81}{64}[/mm] = 0,234375
>  
> kommt ein Wert heraus, der näher an dem
> Taschenrechnerergebnis liegt: [mm]ln(\bruch{3}{2})[/mm] =
> 0,4054651081
>  
> Die Differenz bei: [mm]\bruch{5}{2}[/mm] - [mm]ln(\bruch{3}{2}) \approx[/mm]
> 2,0945
>  von: [mm]\bruch{15}{64}[/mm] - [mm]ln(\bruch{3}{2}) \approx[/mm]
> -0,1710901081
>  
>
>
> 2. Teil:
>  
> Bestimmen Sie ein N, so dass für x = [mm]\bruch{1}{2}[/mm] und
> jedes n [mm]\ge[/mm] N gilt:
>  
> [mm]\varepsilon[/mm] = [mm]10^{-6}[/mm]
>  
> | ln(1+x) - [mm]\summe_{k=1}^{n} (-1)^{k-1} \bruch{1}{k} *x^k| \le b_{k+1} \le \varepsilon[/mm]
>  
> Muß ich hier nun noch eine neue Summe erzeugen für x =
> [mm]\bruch{1}{2}?[/mm]
>  
> z.B.: 1 + [mm](-1)^{1-1}[/mm] * [mm]\bruch{1}{1}[/mm] * [mm](\bruch{1}{2})^1[/mm] +
> [mm](-1)^{2-1}[/mm] * [mm]\bruch{1}{2}[/mm] * [mm](\bruch{1}{2})^2[/mm] + [mm](-1)^{3-1}[/mm] *
> [mm]\bruch{1}{3}[/mm] * [mm](\bruch{1}{2})^3[/mm] + [mm](-1)^{4-1}[/mm] * [mm]\bruch{1}{4}[/mm]
> * [mm](\bruch{1}{2})^4[/mm] + ...
>  
> Nun würde ich wie ich es in anderen Aufgaben schon gemacht
> habe nach folgendem Muster vorgehen wollen:
>
> [mm]|b_{k+1}| \le \varepsilon[/mm]
>  
> Müßte ich hier dann einfach etwas annehmen und dann den
> Rest bestimmen ?
>  z.B.: | ln(1+x) - 1 + [mm](-1)^{1-1}[/mm] * [mm]\bruch{1}{1}[/mm] *
> [mm](\bruch{1}{2})^1[/mm] + [mm](-1)^{2-1}[/mm] * [mm]\bruch{1}{2}[/mm] *
> [mm](\bruch{1}{2})^2[/mm] + [mm](-1)^{3-1}[/mm] * [mm]\bruch{1}{3}[/mm] *
> [mm](\bruch{1}{2})^3[/mm] |
>
> Somit würde ich den nächsten Term nehmen und als:
>  [mm]b_{k+1}[/mm] = [mm](-1)^{4-1}[/mm] * [mm]\bruch{1}{4}[/mm] * [mm](x)^4[/mm]
>  nutzen und alles nach x umstellen!
>  Um den Restfehler zu ermitteln!
>  
> Wären beide Lösungsansätze richtig ?
>  Habe ich noch Fehler gemacht ?
>  
>
> Danke im Vorraus für eure Hilfe :)
>  
>
>
> ----------
>  
> Ich habe diese Aufgabe niergens anders gestellt
>  


Bezug
                
Bezug
Leibnizkriterium Summe entw.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Mi 17.03.2010
Autor: Kerberos2008

Hi Angela,

Danke für die schnelle Antwort!

Ja Taylor hatten wir, werde ich mir noch einmal ansehen, habe Taylor hier jetzt nicht in Bezug gebracht da ich dachte man könnte dies einfach mit dem Leipnizkriterium herleiten!

Was meinst du genau mit:
>dann mußt Du doch x=1/2 nehmen!
Also zwei mal Taylor durchgehen einmal mit x=3/2 und einmal mit x=1/2 ?


>Hallo,
>
>dann mußt Du doch x=1/2 nehmen!
>
>Zur Abschätzung: Taylorreihe und Restglied waren dran?
>Damit würde ich's versuchen. Taschenrechnergetippsel ist wohl eher nicht gemeint.
>
>Gruß v. Angela

Bezug
                        
Bezug
Leibnizkriterium Summe entw.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:11 Mi 17.03.2010
Autor: angela.h.b.


> Was meinst du genau mit:
>  >dann mußt Du doch x=1/2 nehmen!

Hallo,

Du wolltest doch eine Näherung für ln(3/2), und das ist ln(1+x) mit x=1/2.

das meinte ich. Du hast eine Näherung für ln(5/2) berechnet.

Gruß v. Angela

Bezug
                                
Bezug
Leibnizkriterium Summe entw.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:37 Mi 17.03.2010
Autor: Kerberos2008

Ah - klar... jetzt habe ichs gepeilt!
Dankeschön ;)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]