matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenLeibnizkriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Leibnizkriterium
Leibnizkriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leibnizkriterium: monoton fallend?
Status: (Frage) beantwortet Status 
Datum: 21:33 Do 13.12.2007
Autor: Pidgin

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Das Leibnizkriterium gilt ja für monoton fallende Folgen. Muss die Folge nun aber erst ab einer gewissen Schranke monoton fallend sein oder muss es für alle n gelten?
In meinem Skript steht zwar das es für alle n gelten muss, aber man könnte doch die ersten endlich vielen Folgenglieder der Reihe als endliche Summe schreiben und nur über die wirklich monoton fallende Folge, die Reihe bilden.

Ich soll nämlich u.a. zeigen, dass [mm] (n+4)/(n^2-3n+1) [/mm] monoton fallend ist. Ich kriege es aber nicht hin.

        
Bezug
Leibnizkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Do 13.12.2007
Autor: Blech


>  In meinem Skript steht zwar das es für alle n gelten muss,
> aber man könnte doch die ersten endlich vielen
> Folgenglieder der Reihe als endliche Summe schreiben und
> nur über die wirklich monoton fallende Folge, die Reihe
> bilden.

Damit hast Du ja schon gesagt, warum die beiden Definitionen äquivalent sind. =)

Endliche Teilsummen von unendlichen Reihen spielen nur eine Rolle, wenn's darum geht, den tatsächlichen Grenzwert zu finden. Für die Konvergenz kann man sie ignorieren.


Bezug
                
Bezug
Leibnizkriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 Do 13.12.2007
Autor: Pidgin

Aber wieso steht dann überall beim Leibnizkriterium, dass die Folge für alle n monoton fallend sein muss? Bei den anderen Kriterien (z.B. Quotientenkriterium) wird explizit darauf hingewiesen, dass die Bedingungen für endlich viele Folgenglieder nicht gelten müssen.

Bezug
                        
Bezug
Leibnizkriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:17 Do 13.12.2007
Autor: Zorba

Is das Leibnizkriterium nich folgendes:
Nur echt mit 52 Zähnen?

Bezug
                        
Bezug
Leibnizkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Do 13.12.2007
Autor: leduart

Hallo
ich glaub nicht, dass das beim Leibnitzkriterium überall steht! wichtig ist, dass es nicht etwa nur die geraden und ungeraden einzeln betrifft.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]