matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreLeere Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mengenlehre" - Leere Menge
Leere Menge < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leere Menge: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:48 Fr 02.11.2012
Autor: sarah88

Aufgabe
Beweisen der Aussage:

A/B=A [mm] \Rightarrow \varnothing \subseteq [/mm] A [mm] \cap [/mm] B

Hi,

ich habe eine Frage zu dieser Aufgabenstellung.
Um dies zu beweisen, müsste ich ja wie folgt vorgehen:

Es gelte A/B=A
Es sei x [mm] \in \varnothing [/mm]
und das geht ja nicht, also wie gehe ich hierbei vor?

        
Bezug
Leere Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Fr 02.11.2012
Autor: Leopold_Gast

Richtig soll es wohl

[mm]A \setminus B = A \ \ \Rightarrow \ \ A \cap B = \emptyset[/mm]

heißen. Höchstens könnte ich mir noch [mm]A \cap B \subseteq \emptyset[/mm] als Folgerung vorstellen, was aber nur scheinbar weniger aussagt, da ja umgekehrt [mm]\emptyset \subseteq A \cap B[/mm] unabhängig von [mm]A,B[/mm] immer wahr ist.

Bezug
        
Bezug
Leere Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Fr 02.11.2012
Autor: Marcel

Hallo,

> Beweisen der Aussage:
>  
> A/B=A [mm]\Rightarrow \varnothing \subseteq[/mm] A [mm]\cap[/mm] B

wie Leduart schon sagte: Die leere Menge ist immer Teilmenge einer
jeden Menge - das einzusehen ist trivial:
Für alle Elemente der leeren Menge ist zu zeigen, dass diese auch in der
anderen liegen. Da es aber keine Elemente in der leeren Menge gibt, gibt
es auch kein Element, für das etwas zu zeigen wäre!

Meinst Du vielleicht $A [mm] \setminus [/mm] B=A [mm] \Rightarrow [/mm] A [mm] \cap B=\emptyset$? [/mm]

Falls ja: Es gelte $A [mm] \setminus B=A\,.$ [/mm] Nimm' jetzt halt an, es wäre
$A [mm] \cap [/mm] B [mm] \not=\emptyset\,.$ [/mm] Dann gibt es ein $x [mm] \in [/mm] A [mm] \cap [/mm] B$...
(Oder anders gesagt: Es gibt eine einelementige Teilmenge [mm] $E\,$ [/mm] von
$A [mm] \cap B\,.$ [/mm] Ist also [mm] $E=\{x\}\,,$ [/mm] so folgt aus $E [mm] \subseteq [/mm] (A [mm] \cap [/mm] B)$
sofort...)

Der Widerspruch ist dann schnell einsichtig: Einerseits liegt $x [mm] \,$ [/mm] sowohl
in [mm] $A\,$ [/mm] als auch in [mm] $B\,$ [/mm] und damit kann [mm] $x\,$ [/mm] nicht mehr in
$A [mm] \setminus [/mm] B$ sein... aber $A [mm] \setminus [/mm] B$ war doch [mm] $=A\,.$ [/mm]

Siehst Du den Widerspruch?

P.S. Damit Du auch ein bisschen was zu tun hast - und das könnte man
bei Deiner Aufgabe auch verwerten:
Zeige mal, dass $A [mm] \setminus [/mm] B=A [mm] \setminus [/mm] (A [mm] \cap B)\,.$ [/mm]

Gruß,
  Marcel

>  Hi,
>  
> ich habe eine Frage zu dieser Aufgabenstellung.
>  Um dies zu beweisen, müsste ich ja wie folgt vorgehen:
>  
> Es gelte A/B=A
>  Es sei x [mm]\in \varnothing[/mm]
>  und das geht ja nicht, also wie
> gehe ich hierbei vor?


Bezug
                
Bezug
Leere Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:17 Fr 02.11.2012
Autor: sarah88

ok das hat mir schon gereicht hehe :)

ich muss tatsächlich A/B=A [mm] \Rightarrow [/mm] A [mm] \cap [/mm] B = [mm] \varnothing [/mm]
zeigen. Mir war nur nicht klar dass [mm] \varnothing \subset [/mm] A [mm] \cap [/mm] B trivial ist :)

danke für die schnelle hilfe :)

Bezug
                        
Bezug
Leere Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:35 Fr 02.11.2012
Autor: Marcel

Hallo,

> ok das hat mir schon gereicht hehe :)
>  
> ich muss tatsächlich A/B=A [mm]\Rightarrow[/mm] A [mm]\cap[/mm] B =
> [mm]\varnothing[/mm]
>  zeigen. Mir war nur nicht klar dass [mm]\varnothing \subset[/mm] A
> [mm]\cap[/mm] B trivial ist :)

das könntest Du auch so zeigen: Angenommen, [mm] $\varnothing \not\subset [/mm] A [mm] \cap B\,.$ [/mm] Dann gibt es ein $x [mm] \in \varnothing$ [/mm] mit $x [mm] \notin [/mm] A [mm] \cap B\,.$ [/mm]
Hier sieht man schon den Widerspruch $x [mm] \in \varnothing$! [/mm]

> danke für die schnelle hilfe :)

Gerne!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]