matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieLebesgue- integrierbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Lebesgue- integrierbar
Lebesgue- integrierbar < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue- integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 Do 29.11.2007
Autor: jumape

Aufgabe
Sei f: [mm] \IR^{n} [/mm] -> [mm] \IR [/mm] definiert durch f(x)= [mm] lxl^\alpha (1+lxl)^\beta [/mm] . Für welche [mm] \alpha, \beta \in \IR [/mm] ist f Lebesgue-integrierbar?

Es gibt einen Hinweis dazu:
In [mm] \IR^{n} [/mm] gilt [mm] \integral_{B_R(0)}g(lxl)dx= \nu_{n} \integral_{o}^{R} g(r)r^{n-1}dr, [/mm] wobei [mm] \nu_{n} [/mm] für den Oberflächeninhalt der n-dimensionalen Einheitskugel steht.

Leider kann ich mit dem Hinweis nichts anfangen. Meine Idee ist es zu zeigen, dass das Integral [mm] <\infty [/mm] ist und darüber [mm] \alpha [/mm] und [mm] \beta [/mm] zu bestimmen. Leider bin ich weiter noch nicht gekommen. Vor allem der Hinweis verwirrt mich eher.
Es wäre nett wenn jemand mir helfen könnte.

        
Bezug
Lebesgue- integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 04:38 Fr 30.11.2007
Autor: MatthiasKr

Hi,
> Sei f: [mm]\IR^{n}[/mm] -> [mm]\IR[/mm] definiert durch f(x)= [mm]lxl^\alpha (1+lxl)^\beta[/mm]
> . Für welche [mm]\alpha, \beta \in \IR[/mm] ist f
> Lebesgue-integrierbar?
>  Es gibt einen Hinweis dazu:
>  In [mm]\IR^{n}[/mm] gilt [mm]\integral_{B_R(0)}g(lxl)dx= \nu_{n} \integral_{o}^{R} g(r)r^{n-1}dr,[/mm]
> wobei [mm]\nu_{n}[/mm] für den Oberflächeninhalt der n-dimensionalen
> Einheitskugel steht.

ohne den hinweis wirst du nicht sehr weit kommen. die fkt. ist rotationssymmetrisch, deshalb bieten sich kugelkoordinaten an. Ich wuerde anhand des hinweises versuchen, das integral auf [mm] $B_R$ [/mm] zu berechnen. Konvergiert dieses fuer [mm] $R\to\infty$, [/mm] ist f L-intbar.

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]