matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisLebesgue-Integral, Levi
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Lebesgue-Integral, Levi
Lebesgue-Integral, Levi < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue-Integral, Levi: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 22:38 Fr 28.10.2005
Autor: Nimlothiel

Hallo!
Es gibt wieder einen neuen Mathebogen, der gelöst werden möchte. Allerdings schaff ich das nicht und brauche dringend Hilfe. Eigentlich dachte ich, ich würde Mathe verstehen, aber nun bin ich im dritten Semester und versteh nix... Also, hier sind die Aufgaben:
1. Es seien f,g : I  [mm] \to \IR [/mm] beliebige Funktionen. Beweisen Sie
max {f,g} = 1/2[(f+g) + [mm] (f-g)^{+} [/mm] + [mm] (g-f)^{+}]. [/mm]
2. Zeigen Sie f(x) = [mm] e^{-|x|} \in [/mm] L( [mm] \IR). [/mm]
3. Es sei ( [mm] $r_{n} [/mm] _{n [mm] \in \IN}$ [/mm] eine Aufzählung der rationalen Zahlen im Intervall I = [0,1]. Es sei
[mm]\phi(x)=\begin{cases} n, & \mbox{für } x \mbox{ = r_{n}} \\ 0, & \mbox{sonst } \mbox{} \end{cases}[/mm] .

Zeigen Sie phi  [mm] \in [/mm] L(I) und berechnen Sie  [mm] \integral_{I}^{} {\phi}. [/mm] Ist [mm] \phi [/mm] eine Levifunktion?
4. Es sei [mm] (\phi_{n}) [/mm] die Folge der stetigen, stückweise linearen Funktionen auf I = [0,1], die durch lineare Interpolation zwischen den Punkten  [mm] \phi_{n}(0)=0, \phi_{n}(1/n)=n, \phi_{n}(2/n)=0, \phi_{n}(1)=0 [/mm] entsteht. Zeigen Sie, dass diese Folge keine integrierbare Majorante ( also keine Funktion [mm] \Xi \in [/mm] L(I) mit | [mm] \phi_{n}| \le \Xi [/mm] für alle n  [mm] \in \IN) [/mm] besitzt kann.
5. Zeigen Sie, dass alle Intervalle der Form (a,b), (a,b], [a,b), [a,b] mit - [mm] \infty [/mm] < a  [mm] \le [/mm] b <  [mm] \infty [/mm] messbare Teilmengen von L( [mm] \IR) [/mm] sind.

Ich bin für jede Hilfe dankbar, auch für Buchtipps, in dem dieses Thema möglichst einfach erläutert wird.
Nimloth

        
Bezug
Lebesgue-Integral, Levi: Zur 4. Aufg.
Status: (Antwort) fertig Status 
Datum: 23:45 Fr 28.10.2005
Autor: leduart

Hallo Nim
das Integral über [mm] \Phi_{n} [/mm] ist 1 für alle n. Die Funktionen selbst konvergieren punktweise gegen 0. D.h. das Integral ist für lim n gegen unendlich 0. D.h. Grenzwert der Integrale  ungleich Integral des Grenzwerts. und damit ist die Beh. bewiesen. denn gäbe es ein Schranke, dann gälte obiges nicht.
Gruss leduart

Bezug
        
Bezug
Lebesgue-Integral, Levi: tach
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:54 Sa 29.10.2005
Autor: brain86

Hallo GEowissenschaftler 3. Semester der Uni Potsdam aus der Mathe Vorlesung Junek.
Hier ist ein weiterer Geowiss aus deinem Semester.  stell die fragen doch einfach einzeln und stell nicht alles rein.... das ist glaub ich produktiver.

Bezug
        
Bezug
Lebesgue-Integral, Levi: zu Aufgabe 3
Status: (Antwort) fertig Status 
Datum: 16:09 So 30.10.2005
Autor: Toellner

Hallo Nimloth,

die Aufgabe ist im Prinzip wie die, die Brain86 zur Dirichletfunktion stellt: Dort ist D auf allen rationalen Zahlen gleich 1, hier ist sie gleich n (wenn n die Nummer von [mm] q_n \in \IQ [/mm] ist).
Die Antwort ist dieselbe wie bei Brain86 (siehe weiter unten in der Postingliste): [mm] \IQ [/mm] ist eine (Ausnahme-) Menge vom Maß Null, ansonsten ist [mm] \phi [/mm] überall 0 und hat dieselbe Stammfunktion wie die Nullfunktion.

Grüße Richard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]