matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieLebensdauer einer Batterie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Lebensdauer einer Batterie
Lebensdauer einer Batterie < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebensdauer einer Batterie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Mo 19.03.2007
Autor: frustriert

Aufgabe
Die zufällige Lebensdauer (in Jahren) einer Batterie sei [mm] exp(\lambda) [/mm] verteilt, d.h. das zugehörige W-Maß ist bestimmt durch die Dichte
[mm] f(x)=\begin{cases} lambda * e^{- \lambda x}, & \mbox{für } x \mbox{ x ge 0} \\ 0, & \mbox{für } x \mbox{ < 0} \end{cases} [/mm]
mit [mm] \lambda [/mm] = [mm] \bruch{1}{4}. [/mm]
Wie groß ist die Wahrscheinlichkeit, dass die Lebensdauer der Batterie
a) mehr als 4 Jahre
b) weniger als 1 Jahr beträgt?


Hallo!

Habe versucht, obige Aufgabe zu rechnen und bin zu folgenden Ergebnissen gekommen:

[mm] a)\limes_{n\rightarrow\infty} \integral_{4}^{n}{ \lambda * e^{- \lambda x} dx} [/mm] = [mm] \bruch{1}{e} [/mm]

[mm] b)\integral_{0}^{1}{ \lambda * e^{- \lambda x} dx} [/mm] = 1 - [mm] e^{\bruch{1}{4}} [/mm]

Ist das richtig oder habe ich irgendwo einen Fehler gemacht?

Danke für eure Hilfe,

Gruß, Maren

        
Bezug
Lebensdauer einer Batterie: Hier ist der Wurm
Status: (Antwort) fertig Status 
Datum: 20:06 Mo 19.03.2007
Autor: luis52


> Habe versucht, obige Aufgabe zu rechnen und bin zu
> folgenden Ergebnissen gekommen:
>  
> [mm]a)\limes_{n\rightarrow\infty} \integral_{4}^{n}{ \lambda * e^{- \lambda x} dx}[/mm]
> = [mm]\bruch{1}{e}[/mm]
>  
> [mm]b)\integral_{0}^{1}{ \lambda * e^{- \lambda x} dx}[/mm] = 1 -
> [mm]e^{\bruch{1}{4}}[/mm]
>  
> Ist das richtig oder habe ich irgendwo einen Fehler
> gemacht?
>  

>
Moin Maren,

Irgendwo ist hier der Wurm drin. Ein Stammfunktion des Integranden ist [mm] $-\exp(-\lambda [/mm] x)$. Bei a) erhalte ich so [mm] $\exp(-4\lambda)$, [/mm] bei b) [mm] $1-\exp(-\lambda)$. [/mm]

hth


Bezug
                
Bezug
Lebensdauer einer Batterie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:31 Di 20.03.2007
Autor: frustriert

Danke erstmal!

Für [mm] \lambda [/mm] = [mm] \bruch{1}{4} [/mm] stimmen die Ergebnisse doch aber überein (sieht man mal von meinem vergessenen Minus bei b) ab...)

Schönen Tag noch!

Bezug
                        
Bezug
Lebensdauer einer Batterie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:05 Di 20.03.2007
Autor: luis52


>  
> Für [mm]\lambda[/mm] = [mm]\bruch{1}{4}[/mm] stimmen die Ergebnisse doch aber
> überein (sieht man mal von meinem vergessenen Minus bei b)
> ab...)
>  


Huch, [mm] $\lambda=1/4$ [/mm] habe ich ueberlesen. Na, dann sind wir ja einer Meinung. ;-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]