matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikLebensdauer Bauteil
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Lebensdauer Bauteil
Lebensdauer Bauteil < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebensdauer Bauteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Mo 30.06.2008
Autor: stimo59

Hallo!
Ich soll für ein Bauteil mit exponentialverteilter Lenbensdauer und Erwartungswert [mm] \mu=800h [/mm] die folgenden Wahrscheinlichkeiten angeben:
i) Das Bauteil überlebt die 800. Stunde
ii) Das Bauteil fäält zwischen 400. und 800 Stunde aus
iii) Das Bauteil überlebt noch 400 Stunde, wenn es schon 800 Stunden überlebt hat. Hier soll man P(X>1200|X>800) berechnen.

Also es ist ja [mm] F(X)=1-e^{-\lambda*X} [/mm]
Bei i) ist P(X>800)=1-F(800) = 0,368
ii) F(800)-F(400) =0,2387
Mein Problem ist, dass ich nicht weiß, wie ich bei iii) diese bedingt Wahrscheinlichkeit berechne. Kann mir das bitte jemand erklären?
Vielen Dank!
Gruß, Timo

        
Bezug
Lebensdauer Bauteil: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Mo 30.06.2008
Autor: Al-Chwarizmi


> Hallo!
>  Ich soll für ein Bauteil mit exponentialverteilter
> Lenbensdauer und Erwartungswert [mm]\mu=800h[/mm] die folgenden
> Wahrscheinlichkeiten angeben:
>  i) Das Bauteil überlebt die 800. Stunde
>  ii) Das Bauteil fäält zwischen 400. und 800 Stunde aus
>  iii) Das Bauteil überlebt noch 400 Stunde, wenn es schon
> 800 Stunden überlebt hat. Hier soll man P(X>1200|X>800)
> berechnen.
>  
> Also es ist ja [mm]F(X)=1-e^{-\lambda*X}[/mm]
>  Bei i) ist P(X>800)=1-F(800) = 0,368
>  ii) F(800)-F(400) =0,2387
>  Mein Problem ist, dass ich nicht weiß, wie ich bei iii)
> diese bedingt Wahrscheinlichkeit berechne. Kann mir das
> bitte jemand erklären?
>  Vielen Dank!
>  Gruß, Timo


In diesem Fall geht es wohl einfach so:

          [mm] P(X>1200|X>800)=\bruch{P(X>1200)}{P(X>800)} [/mm]

Das Ergebnis zeigt, dass dies einfach gleich P(X>400) ist.
Die noch zu erwartende weitere Lebensdauer ist unabhängig
von der schon verstrichenen Zeit.

Gruß      al-Chw.


Bezug
                
Bezug
Lebensdauer Bauteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:15 Di 01.07.2008
Autor: stimo59

Ah, danke!
Das hätte man ja eigentlich auch schon wegen der Gedächtnislosigkeit sehen können.
Gruß, Timo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]