matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisLaurentreihenentwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Laurentreihenentwicklung
Laurentreihenentwicklung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurentreihenentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:38 So 14.06.2009
Autor: steppenhahn

Aufgabe
[Dateianhang nicht öffentlich]

Hallo!

Ich wollte fragen, wie man überhaupt systematisch eine Laurentreihe mit Konvergenzradius $|z| > 2$ entwickelt.
Da die vorgegebene Funktion bei [mm] $z_{0} [/mm] = -2i$ einen Pol hat, könnte man also um den Nullpunkt entwickeln, dann käme das mit dem Konvergrenzradius hin?
Ich weiß nicht so richtig, was ich machen soll und wäre über Hilfe und eine Anleitung sehr erfreut :-)

Viele Grüße, Stefan.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Laurentreihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 So 14.06.2009
Autor: MathePower

Hallo steppenhahn,

> [Dateianhang nicht öffentlich]
>  Hallo!
>  
> Ich wollte fragen, wie man überhaupt systematisch eine
> Laurentreihe mit Konvergenzradius [mm]|z| > 2[/mm] entwickelt.
>  Da die vorgegebene Funktion bei [mm]z_{0} = -2i[/mm] einen Pol hat,
> könnte man also um den Nullpunkt entwickeln, dann käme das
> mit dem Konvergrenzraius hin?


Ja, das kommt hin.

Damit das hinkommt mußt Du das so schreiben:


[mm]f\left(z\right)=\bruch{1}{\left(z+2i\right)^{2}}=\bruch{1}{z^{2}}*\bruch{1}{\left(1+\bruch{2i}{z}\right)^{2}}[/mm]


>  Ich weiß nicht so richtig, was ich machen soll und wäre
> über Hilfe und eine Anleitung sehr erfreut :-)
>  
> Viele Grüße, Stefan.


Gruß
MathePower

Bezug
                
Bezug
Laurentreihenentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:11 Mo 15.06.2009
Autor: steppenhahn

Hallo!

Danke für deine Antwort, MathePower!
Ich habe also schonmal

[mm]f\left(z\right)=\bruch{1}{\left(z+2i\right)^{2}}=\bruch{1}{z^{2}}*\bruch{1}{\left(1+\bruch{2i}{z}\right)^{2}}[/mm]

Nun soll ich das ja wahrscheinlich in eine geometrische Reihe umwandeln, nur steht da im Nenner das mich störende Quadrat noch drumherum. Das einzige, was ich dann schreiben könnte wäre:

[mm]f\left(z\right)=\bruch{1}{z^{2}}*\bruch{1}{\left(1+\bruch{2i}{z}\right)^{2}} = \bruch{1}{z^{2}}*\left(\sum_{k=0}^{\infty}\left(-\bruch{2i}{z}\right)^{k}\right)^{2}[/mm]

Was mache ich jetzt? Das Cauchy-Produkt anwenden?
Vielen Dank für Eure Hilfe, Stefan.

Bezug
                        
Bezug
Laurentreihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Mo 15.06.2009
Autor: MathePower

Hallo steppenhahn,

> Hallo!
>  
> Danke für deine Antwort, MathePower!
>  Ich habe also schonmal
>  
> [mm]f\left(z\right)=\bruch{1}{\left(z+2i\right)^{2}}=\bruch{1}{z^{2}}*\bruch{1}{\left(1+\bruch{2i}{z}\right)^{2}}[/mm]
>  
> Nun soll ich das ja wahrscheinlich in eine geometrische
> Reihe umwandeln, nur steht da im Nenner das mich störende
> Quadrat noch drumherum. Das einzige, was ich dann schreiben
> könnte wäre:
>  
> [mm]f\left(z\right)=\bruch{1}{z^{2}}*\bruch{1}{\left(1+\bruch{2i}{z}\right)^{2}} = \bruch{1}{z^{2}}*\left(\sum_{k=0}^{\infty}\left(-\bruch{2i}{z}\right)^{k}\right)^{2}[/mm]
>  
> Was mache ich jetzt? Das Cauchy-Produkt anwenden?


Das siehst Du vollkommen richtig.


>  Vielen Dank für Eure Hilfe, Stefan.


Gruß
MathePower

Bezug
                                
Bezug
Laurentreihenentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Mo 15.06.2009
Autor: steppenhahn

Also hätte ich dann:

[mm] $f\left(z\right)= \bruch{1}{z^{2}}*\left(\sum_{k=0}^{\infty}\left(-\bruch{2i}{z}\right)^{k}\right)^{2} [/mm] = [mm] \bruch{1}{z^{2}}*\sum_{k=0}^{\infty}\left(\sum_{n=0}^{k}\left(-\bruch{2i}{z}\right)^{n}*\left(-\bruch{2i}{z}\right)^{k-n}\right) [/mm] = [mm] \bruch{1}{z^{2}}*\sum_{k=0}^{\infty}(k+1)*\left(-\bruch{2i}{z}\right)^{k} [/mm] = [mm] \bruch{1}{z^{2}}*\sum_{k=-\infty}^{0}\bruch{-(k+1)}{(-2i)^{k}}*z^{k} [/mm] = [mm] \sum_{k=-\infty}^{-2}\bruch{-(k+3)}{(-2i)^{k+2}}*z^{k}$ [/mm]

Ist das so ok ;-) ?

Vielen Dank für Eure Hilfe, Stefan.

Bezug
                                        
Bezug
Laurentreihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Mo 15.06.2009
Autor: MathePower

Hallo steppenhahn,

> Also hätte ich dann:
>  
> [mm]f\left(z\right)= \bruch{1}{z^{2}}*\left(\sum_{k=0}^{\infty}\left(-\bruch{2i}{z}\right)^{k}\right)^{2} = \bruch{1}{z^{2}}*\sum_{k=0}^{\infty}\left(\sum_{n=0}^{k}\left(-\bruch{2i}{z}\right)^{n}*\left(-\bruch{2i}{z}\right)^{k-n}\right) = \bruch{1}{z^{2}}*\sum_{k=0}^{\infty}(k+1)*\left(-\bruch{2i}{z}\right)^{k} = \bruch{1}{z^{2}}*\sum_{k=-\infty}^{0}\bruch{-(k+1)}{(-2i)^{k}}*z^{k} = \sum_{k=-\infty}^{-2}\bruch{-(k+3)}{(-2i)^{k+2}}*z^{k}[/mm]


Bis hierhin ist alles ok:

[mm]f\left(z\right)= \bruch{1}{z^{2}}*\left(\sum_{k=0}^{\infty}\left(-\bruch{2i}{z}\right)^{k}\right)^{2} = \bruch{1}{z^{2}}*\sum_{k=0}^{\infty}\left(\sum_{n=0}^{k}\left(-\bruch{2i}{z}\right)^{n}*\left(-\bruch{2i}{z}\right)^{k-n}\right) = \bruch{1}{z^{2}}*\sum_{k=0}^{\infty}(k+1)*\left(-\bruch{2i}{z}\right)^{k}[/mm]

Jetzt wird das umgeschrieben:

[mm]\bruch{1}{z^{2}}*\sum_{k=0}^{\infty}(k+1)*\left(-\bruch{2i}{z}\right)^{k}=\bruch{1}{z^{2}}*\sum_{k=0}^{\infty}(k+1)*\left(-2i\right)^{k}*z^{-k}[/mm]

Definieren wir nun [mm]l:=-k[/mm], so läuft l von [mm]-\infty[/mm] bis 0.

[mm]l=-k \Rightarrow k=-l[/mm]

Dann folgt:

[mm]\bruch{1}{z^{2}}*\sum_{k=0}^{\infty}(k+1)*\left(-2i\right)^{k}*z^{-k}=\bruch{1}{z^{2}}*\sum_{l=-\infty}^{0}(-l+1)*\left(-2i\right)^{-l}*z^{l}=\bruch{1}{z^{2}}*\sum_{l=-\infty}^{0}\bruch{1-l}{\left(-2i\right)^{l}}*z^{l}[/mm]

[mm]\bruch{1}{z^{2}}*\sum_{l=-\infty}^{0}(-l+1)*\left(-2i\right)^{-l}*z^{l}=\sum_{l=-\infty}^{0}(-l+1)*\left(-2i\right)^{-l}*z^{l-2}[/mm]


Definieren wir [mm]n:=l-2[/mm] so läuft n von [mm]-\infty[/mm] bis -2.

[mm]n=l-2 \Rightarrow l=n+2[/mm]

So erhalten wir

[mm]\sum_{l=-\infty}^{0}(-l+1)*\left(-2i\right)^{-l}*z^{l-2}=\sum_{n=-\infty}^{-2}(-n-2+1)*\left(-2i\right)^{-n-2}*z^{n}[/mm]

[mm]=\sum_{n=-\infty}^{-2}(-n-1)*\left(-2i\right)^{-n-2}*z^{n}=\sum_{n=-\infty}^{-2}\bruch{-\left(n+1\right)}{\left(-2i\right)^{n+2}}*z^{n}[/mm]


>  
> Ist das so ok ;-) ?
>  
> Vielen Dank für Eure Hilfe, Stefan.


Gruß
MathePower

Bezug
                                                
Bezug
Laurentreihenentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:44 Di 16.06.2009
Autor: steppenhahn

Vielen Dank für deine Hilfe MathePower, hat mir sehr geholfen !!!
Grüße, Stefan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]