matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenLaurentreihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Laurentreihen
Laurentreihen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurentreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Mi 06.04.2011
Autor: Vicky89

jetzt habe ich nochmal eine frage zu ein paar anderen funktionen.

[mm] f(x)=\bruch{sin(x)}{x^{5}} [/mm]
dazu schaue ich mir die reihenentwicklung von sinus an
[mm] sin(x)=\bruch{x}{1}-\bruch{x^{3}}{3!}+\bruch{x^{5}}{5!}+-... [/mm]
und teile schließlich alles durch [mm] x^{5}, [/mm] so dass ich auf
[mm] \bruch{1}{x^{4}}-\bruch{1}{3!x^{2}} [/mm] + 1 +-...
komme, oder?

so, wie is das jetzt bei exp(1/z)
ist das = [mm] \bruch{1}{x} [/mm] + 1 [mm] +\bruch{x}{2!} [/mm] ?
oder muss ich da anders rangehen?

und wie sieht es mit sin(cos(z)) aus?




        
Bezug
Laurentreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:23 Do 07.04.2011
Autor: fred97


> jetzt habe ich nochmal eine frage zu ein paar anderen
> funktionen.
>  
> [mm]f(x)=\bruch{sin(x)}{x^{5}}[/mm]
>  dazu schaue ich mir die reihenentwicklung von sinus an
>  
> [mm]sin(x)=\bruch{x}{1}-\bruch{x^{3}}{3!}+\bruch{x^{5}}{5!}+-...[/mm]
>  und teile schließlich alles durch [mm]x^{5},[/mm] so dass ich auf
>  [mm]\bruch{1}{x^{4}}-\bruch{1}{3!x^{2}}[/mm] + 1 +-...
>  komme, oder?

Ja


>  
> so, wie is das jetzt bei exp(1/z)
>  ist das = [mm]\bruch{1}{x}[/mm] + 1 [mm]+\bruch{x}{2!}[/mm] ?


Das ist Quatsch !

Es ist doch  [mm] e^w= 1+w+\bruch{w^2}{2!}+\bruch{w^3}{3!}+ [/mm] .....

Jetzt setze w=1/z

FRED

>  oder muss ich da anders rangehen?
>  
> und wie sieht es mit sin(cos(z)) aus?
>  


Bezug
                
Bezug
Laurentreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:21 Do 07.04.2011
Autor: Vicky89


> > so, wie is das jetzt bei exp(1/z)
>  >  ist das = [mm]\bruch{1}{x}[/mm] + 1 [mm]+\bruch{x}{2!}[/mm] ?
>  
>
> Das ist Quatsch !
>  
> Es ist doch  [mm]e^w= 1+w+\bruch{w^2}{2!}+\bruch{w^3}{3!}+[/mm]
> .....
>  
> Jetzt setze w=1/z


ok, das klingt logisch. das heißt [mm] 1+\bruch{1}{z}+\bruch{1}{2!z^{2}}+\bruch{1}{3!z^{3}}+..... [/mm] ?


[/mm]

>  
> FRED
>  
> >  oder muss ich da anders rangehen?

>  >  
> > und wie sieht es mit sin(cos(z)) aus?

aber wie ist es hier?

muss ich da für die reihenentwicklung von sin, für z immer die komplette reihenentwicklugn des cos einsetzen??


habe jetzt nochmal einige gerechnet. bei den einfacheren klappt es ganz gut. aber wie ist es bei [mm] sin^{2} [/mm] (z) habe das ergebnis schon gesehen, weiß aber nicht wie ich auf diese reihe komme...

Bezug
                        
Bezug
Laurentreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Do 07.04.2011
Autor: MathePower

Hallo Vicky89,

> > > so, wie is das jetzt bei exp(1/z)
>  >  >  ist das = [mm]\bruch{1}{x}[/mm] + 1 [mm]+\bruch{x}{2!}[/mm] ?
>  >  
> >
> > Das ist Quatsch !
>  >  
> > Es ist doch  [mm]e^w= 1+w+\bruch{w^2}{2!}+\bruch{w^3}{3!}+[/mm]
> > .....
>  >  
> > Jetzt setze w=1/z
>  
>
> ok, das klingt logisch. das heißt
> [mm]1+\bruch{1}{z}+\bruch{1}{2!z^{2}}+\bruch{1}{3!z^{3}}+.....[/mm]
> ?
>


Ja. [ok]


>
> [/mm]
> >  

> > FRED
>  >  
> > >  oder muss ich da anders rangehen?

>  >  >  
> > > und wie sieht es mit sin(cos(z)) aus?
>  
> aber wie ist es hier?
>  
> muss ich da für die reihenentwicklung von sin, für z
> immer die komplette reihenentwicklugn des cos einsetzen??


Das kommt darauf an, bis zu welcher Potenz
die Reihe entwickelt werden soll.


>  
> habe jetzt nochmal einige gerechnet. bei den einfacheren
> klappt es ganz gut. aber wie ist es bei [mm]sin^{2}[/mm] (z) habe
> das ergebnis schon gesehen, weiß aber nicht wie ich auf
> diese reihe komme...


Multipliziere die Reihe für [mm]\sin\left(z\right)[/mm] mit sich selbst.


Gruss
MathePower

Bezug
                                
Bezug
Laurentreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 Do 07.04.2011
Autor: Vicky89


> > > FRED
>  >  >

> > > >  oder muss ich da anders rangehen?

>  >  >  >

> > > > und wie sieht es mit sin(cos(z)) aus?
>  >

> > aber wie ist es hier?
>  >

> > muss ich da für die reihenentwicklung von sin, für z
> > immer die komplette reihenentwicklugn des cos einsetzen??
>

>

> Das kommt darauf an, bis zu welcher Potenz
>  die Reihe entwickelt werden soll.
>

also eigentlich geht es bei den aufgaben darum, dass residuum zu berechnen...


> >
> > habe jetzt nochmal einige gerechnet. bei den einfacheren
> > klappt es ganz gut. aber wie ist es bei [mm]sin^{2}[/mm] (z) habe
> > das ergebnis schon gesehen, weiß aber nicht wie ich auf
> > diese reihe komme...

>
>

> Multipliziere die Reihe für [mm]\sin\left(z\right)[/mm] mit sich
> selbst.
>

das habe ich versucht, komme aber nicht auf das richtige ergebnis.

sin(z) = z - [mm] \bruch{z^{3}}{3!} [/mm] + [mm] \bruch{z^{5}}{5!}-+.... [/mm]


dann müsste ich jetzt doch rechnen

[mm] z*z=z^{2} [/mm]
z*- [mm] \bruch{z^{3}}{3!}= -\bruch{z^{4}}{3!} [/mm]
[mm] z*\bruch{z^{5}}{5!}= \bruch{z^{6}}{5!} [/mm]

und ich hätte
[mm] sin^{2}(z)=z^{2}-\bruch{z^{4}}{3!}+ \bruch{z^{6}}{5!}-+.... [/mm]

aber laut wolframalpha müssteich auf

[mm] sin^{2}(z)=z^{2}-\bruch{z^{4}}{3}+ \bruch{2z^{6}}{45}-+.... [/mm]
kommen.

wo liegt denn mein fehler?



danke für die hilfe


Bezug
                                        
Bezug
Laurentreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Do 07.04.2011
Autor: MathePower

Hallo Vicky89,


>
> > > > FRED
>  >  >  >

> > > > >  oder muss ich da anders rangehen?

>  >  >  >  >

> > > > > und wie sieht es mit sin(cos(z)) aus?
>  >  >

> > > aber wie ist es hier?
>  >  >

> > > muss ich da für die reihenentwicklung von sin, für z
>  > > immer die komplette reihenentwicklugn des cos

> einsetzen??
>  >

> >
>  > Das kommt darauf an, bis zu welcher Potenz

>  >  die Reihe entwickelt werden soll.
>  >

>
> also eigentlich geht es bei den aufgaben darum, dass
> residuum zu berechnen...
>  

Dann  musst Du das wohl so machen.

Wird [mm]\sin\left(\cos\left(z\right)\right)[/mm]  in eine  Reihe um z=0 entwickelt,
so stellst Du fest, daß das Residuum 0 ist.


>
> > >
> > > habe jetzt nochmal einige gerechnet. bei den einfacheren
>  > > klappt es ganz gut. aber wie ist es bei [mm]sin^{2}[/mm] (z)

> habe
>  > > das ergebnis schon gesehen, weiß aber nicht wie ich

> auf
>  > > diese reihe komme...

>  >
>  >
>  > Multipliziere die Reihe für [mm]\sin\left(z\right)[/mm] mit

> sich
>  > selbst.

>  >

> das habe ich versucht, komme aber nicht auf das richtige
> ergebnis.
>  
> sin(z) = z - [mm]\bruch{z^{3}}{3!}[/mm] + [mm]\bruch{z^{5}}{5!}-+....[/mm]
>  
>
> dann müsste ich jetzt doch rechnen
>  
> [mm]z*z=z^{2}[/mm]
>  z*- [mm]\bruch{z^{3}}{3!}= -\bruch{z^{4}}{3!}[/mm]
>  
> [mm]z*\bruch{z^{5}}{5!}= \bruch{z^{6}}{5!}[/mm]
>  
> und ich hätte
>  [mm]sin^{2}(z)=z^{2}-\bruch{z^{4}}{3!}+ \bruch{z^{6}}{5!}-+....[/mm]
>  
> aber laut wolframalpha müssteich auf
>  
> [mm]sin^{2}(z)=z^{2}-\bruch{z^{4}}{3}+ \bruch{2z^{6}}{45}-+....[/mm]
>  
> kommen.
>  
> wo liegt denn mein fehler?
>  


Hier musst Du schon rechnen:

[mm]\left(z - \bruch{z^{3}}{3!} + \bruch{z^{5}}{5!}-+....\right)*\left(z - \bruch{z^{3}}{3!} + \bruch{z^{5}}{5!}-+....\right)[/mm]

Jedes Glied des ersten Faktors mit jedem Glied
des zweiten Faktors multiplizieren.


>
>
> danke für die hilfe
>  


Gruss
MathePower

Bezug
                                                
Bezug
Laurentreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Do 07.04.2011
Autor: Vicky89


> Hallo Vicky89,
>  
>
> >
> > > > > FRED
>  >  >  >  >

> > > > > >  oder muss ich da anders rangehen?

>  >  >  >  >  >

> > > > > > und wie sieht es mit sin(cos(z)) aus?
>  >  >  >

> > > > aber wie ist es hier?
>  >  >  >

> > > > muss ich da für die reihenentwicklung von sin, für z
>  >  > > immer die komplette reihenentwicklugn des cos

> > einsetzen??
>  >  >

> > >
>  >  > Das kommt darauf an, bis zu welcher Potenz

>  >  >  die Reihe entwickelt werden soll.
>  >  >

> >
> > also eigentlich geht es bei den aufgaben darum, dass
> > residuum zu berechnen...
>  >  
>
> Dann  musst Du das wohl so machen.
>  



> Wird [mm]\sin\left(\cos\left(z\right)\right)[/mm]  in eine  Reihe um
> z=0 entwickelt,
>  so stellst Du fest, daß das Residuum 0 ist.
>  

muss man hier dazu auch wirklich die reihe entwicklen? oder geht das auch anders?


> >
> > > >
> > > > habe jetzt nochmal einige gerechnet. bei den einfacheren
>  >  > > klappt es ganz gut. aber wie ist es bei [mm]sin^{2}[/mm] (z)

> > habe
>  >  > > das ergebnis schon gesehen, weiß aber nicht wie

> ich
> > auf
>  >  > > diese reihe komme...

>  >  >
>  >  >
>  >  > Multipliziere die Reihe für [mm]\sin\left(z\right)[/mm] mit

> > sich
>  >  > selbst.

>  >  >

> > das habe ich versucht, komme aber nicht auf das richtige
> > ergebnis.
>  >  
> > sin(z) = z - [mm]\bruch{z^{3}}{3!}[/mm] + [mm]\bruch{z^{5}}{5!}-+....[/mm]
>  >  
> >
> > dann müsste ich jetzt doch rechnen
>  >  
> > [mm]z*z=z^{2}[/mm]
>  >  z*- [mm]\bruch{z^{3}}{3!}= -\bruch{z^{4}}{3!}[/mm]
>  >  
> > [mm]z*\bruch{z^{5}}{5!}= \bruch{z^{6}}{5!}[/mm]
>  >  
> > und ich hätte
>  >  [mm]sin^{2}(z)=z^{2}-\bruch{z^{4}}{3!}+ \bruch{z^{6}}{5!}-+....[/mm]
>  
> >  

> > aber laut wolframalpha müssteich auf
>  >  
> > [mm]sin^{2}(z)=z^{2}-\bruch{z^{4}}{3}+ \bruch{2z^{6}}{45}-+....[/mm]
>  
> >  

> > kommen.
>  >  
> > wo liegt denn mein fehler?
>  >  
>
>
> Hier musst Du schon rechnen:
>  
> [mm]\left(z - \bruch{z^{3}}{3!} + \bruch{z^{5}}{5!}-+....\right)*\left(z - \bruch{z^{3}}{3!} + \bruch{z^{5}}{5!}-+....\right)[/mm]
>  
> Jedes Glied des ersten Faktors mit jedem Glied
>  des zweiten Faktors multiplizieren.
>  
>

das war mir schon bewusst. aber ich habe vergessen, dass es am ende ja mehrere glieder gibt, die dann z.b. [mm] z^{4} [/mm] im zähler haben.
aber ich habe es jetzt verstanden, ausprobiert und es stimmt =)
hat die funktion dann kein residuum?


> >
> > danke für die hilfe
>  >  
>
>
> Gruss
>  MathePower


Bezug
                                                        
Bezug
Laurentreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 Do 07.04.2011
Autor: MathePower

Hallo Vicky89,

>
> > Wird [mm]\sin\left(\cos\left(z\right)\right)[/mm]  in eine  Reihe um
> > z=0 entwickelt,
>  >  so stellst Du fest, daß das Residuum 0 ist.
>  >  
>
> muss man hier dazu auch wirklich die reihe entwicklen? oder
> geht das auch anders?
>  


Einfacher geht das mit dem []Cauchyschen Integralsatz

  
Gruss
MathePower

Bezug
                                                        
Bezug
Laurentreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Do 07.04.2011
Autor: fred97


>
>
> > Wird [mm]\sin\left(\cos\left(z\right)\right)[/mm]  in eine  Reihe um
> > z=0 entwickelt,
>  >  so stellst Du fest, daß das Residuum 0 ist.
>  >  
>
> muss man hier dazu auch wirklich die reihe entwicklen? oder
> geht das auch anders?


Ja, durch ein wenig nachdenken.

Die Funktion [mm]f(z)=\sin\left(\cos\left(z\right)\right)[/mm]  ist eine ganze Funktion, hat also eine auf ganz [mm] \IC [/mm] konv. Potenzreihenentwicklung um 0 (die man für obige Frage gar nicht kennen muß).

Dh.:    Potenzreihe von f um 0 = Laurentreihe um 0

Damit sind alle Koeffizienten [mm] a_{-n} [/mm] im Hauptteil der Laurentreihe   =0, also auch:

                   [mm] a_{-1}=0 [/mm]

FRED


Bezug
                                        
Bezug
Laurentreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Do 07.04.2011
Autor: fred97


>
> > > > FRED
>  >  >  >

> > > > >  oder muss ich da anders rangehen?

>  >  >  >  >

> > > > > und wie sieht es mit sin(cos(z)) aus?
>  >  >

> > > aber wie ist es hier?
>  >  >

> > > muss ich da für die reihenentwicklung von sin, für z
>  > > immer die komplette reihenentwicklugn des cos

> einsetzen??
>  >

> >
>  > Das kommt darauf an, bis zu welcher Potenz

>  >  die Reihe entwickelt werden soll.
>  >

>
> also eigentlich geht es bei den aufgaben darum, dass
> residuum zu berechnen...
>  
>
> > >
> > > habe jetzt nochmal einige gerechnet. bei den einfacheren
>  > > klappt es ganz gut. aber wie ist es bei [mm]sin^{2}[/mm] (z)

> habe
>  > > das ergebnis schon gesehen, weiß aber nicht wie ich

> auf
>  > > diese reihe komme...

>  >
>  >
>  > Multipliziere die Reihe für [mm]\sin\left(z\right)[/mm] mit

> sich
>  > selbst.

>  >

> das habe ich versucht, komme aber nicht auf das richtige
> ergebnis.
>  
> sin(z) = z - [mm]\bruch{z^{3}}{3!}[/mm] + [mm]\bruch{z^{5}}{5!}-+....[/mm]
>  
>
> dann müsste ich jetzt doch rechnen
>  
> [mm]z*z=z^{2}[/mm]
>  z*- [mm]\bruch{z^{3}}{3!}= -\bruch{z^{4}}{3!}[/mm]
>  
> [mm]z*\bruch{z^{5}}{5!}= \bruch{z^{6}}{5!}[/mm]
>  
> und ich hätte
>  [mm]sin^{2}(z)=z^{2}-\bruch{z^{4}}{3!}+ \bruch{z^{6}}{5!}-+....[/mm]



Das ist doch Blödsinn ! Was Du berechnet hast ist nicht [mm] \sin^2(z) [/mm] sondern $z* [mm] \sin(z)$ [/mm]

>  
> aber laut wolframalpha müssteich auf
>  
> [mm]sin^{2}(z)=z^{2}-\bruch{z^{4}}{3}+ \bruch{2z^{6}}{45}-+....[/mm]
>  
> kommen.
>  
> wo liegt denn mein fehler?

S.o.

Tipp: Cauchyprodukt

FRED

>  
>
>
> danke für die hilfe
>  


Bezug
                                                
Bezug
Laurentreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 Do 07.04.2011
Autor: Vicky89

dake für die hilfe.
den richtigen ansatz hatte ich schon. ich wusste, dass ich das alles miteinander multiplizieren muss. hatte das aber erstmal nur für z angefangen. aber wie gesgat, ist mir aufgefallen, wie ich es richtig machen muss.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]