matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisLaurentreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Laurentreihe
Laurentreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurentreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:22 So 05.07.2009
Autor: Denny22

Aufgabe
Bestimme das Residuum im Punkt $0$ der Funktion

     [mm] $f(z)=\frac{z^3}{(z-1)(z^4+2)}$ [/mm]

Hallo an alle,

die Lösung dieser Aufgabe ist sehr einfach: Da $f$ im Punkt $0$ keinen Pol besitzt, ist das Residuum dort natürlich $0$. Ich möchte nun dieses Resultat zusätzlich mit der Laurentreihe überprüfen, bei der bekanntlich [mm] $a_{-1}=0$ [/mm] gelten muss.

Wie gehe ich aber bei der Laurententwicklung dieser Funktion vor? Zunächst Partialbruchzerlegung und anschließend alle 5 Terme mit der geometrischen Reihe umformen?

Danke und Gruß

        
Bezug
Laurentreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:07 Mo 06.07.2009
Autor: fred97


> Bestimme das Residuum im Punkt [mm]0[/mm] der Funktion
>  
> [mm]f(z)=\frac{z^3}{(z-1)(z^4+2)}[/mm]
>  Hallo an alle,
>  
> die Lösung dieser Aufgabe ist sehr einfach: Da [mm]f[/mm] im Punkt
> [mm]0[/mm] keinen Pol besitzt, ist das Residuum dort natürlich [mm]0[/mm].
> Ich möchte nun dieses Resultat zusätzlich mit der
> Laurentreihe überprüfen, bei der bekanntlich [mm]a_{-1}=0[/mm]
> gelten muss.
>  
> Wie gehe ich aber bei der Laurententwicklung dieser
> Funktion vor? Zunächst Partialbruchzerlegung und
> anschließend alle 5 Terme mit der geometrischen Reihe
> umformen?

Das kannst Du machen, aber wozu der Aufwand ? Es kommen eh nur Potenzreihen dabei heraus

FRED



>  
> Danke und Gruß


Bezug
                
Bezug
Laurentreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:51 Mo 06.07.2009
Autor: Denny22

Ich möchte den Studenten mit meinen Musterlösungen verschiedene Methoden an ein und derselben Aufgabe aufzeigen, mit denen sich die Residuen einer Funktion in einem bestimmten Punkt erfassen lassen. Nichts desto trotz hast Du bei diesem Beispiel absolut recht, wenn Du sagst, dass diese Vorgehensweise mit wesentlich mehr Aufwand verbunden ist.

Danke schon einmal.
Gruß Denny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]