matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisLaurentreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Laurentreihe
Laurentreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurentreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Do 25.06.2009
Autor: Reicheinstein

Aufgabe
[Dateianhang nicht öffentlich]

hi,

also ich bin folgendermaßen vorgegangen. hab pbz gemacht und n bissl zusammengefasst und bin dann am ende auf folgendes gekommen:

[mm] -\bruch{i}{1-z} [/mm] und das is ja [mm] -i\summe_{k=0}^{\infty}z^{k} [/mm] aber das war zu leicht um richtig zu sein :/ ich hab den entwicklungspunkt nich beachtet, kann das sein? aber ich weiß nich, wie der meine rechnung beinflussen soll, vllt einer von euch? ^^

sg

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Laurentreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Do 25.06.2009
Autor: abakus


> [Dateianhang nicht öffentlich]
>  hi,
>  
> also ich bin folgendermaßen vorgegangen. hab pbz gemacht

Zeigen!
Die PBZ macht man, um ene Summe aus zwei Brüchen zu erhalten. Du hast "nach Zusammenfassen" nur noch einen Bruch. Die PBZ kann nicht stimmen, zur Fehlersuche brauchen wir deinen Lösungsweg.
Gruß Abakus

> und n bissl zusammengefasst und bin dann am ende auf
> folgendes gekommen:
>  
> [mm]-\bruch{i}{1-z}[/mm] und das is ja [mm]-i\summe_{k=0}^{\infty}z^{k}[/mm]
> aber das war zu leicht um richtig zu sein :/ ich hab den
> entwicklungspunkt nich beachtet, kann das sein? aber ich
> weiß nich, wie der meine rechnung beinflussen soll, vllt
> einer von euch? ^^
>  
> sg


Bezug
                
Bezug
Laurentreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:36 Do 25.06.2009
Autor: Reicheinstein

hi,

hab mich auch gewundert *g* hab mich wohl irgendwo verrechnet. aber selbst wenn ich nach dem vermeintlichen zusammenfassen was andres raus hätte wär ich nich weitergekommen. also is egal jetzt. lass ichs einfach. trotzdem danke. sg

Bezug
        
Bezug
Laurentreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:07 Fr 26.06.2009
Autor: fred97

Zu (i)


Es ist
  $f(z) = [mm] \bruch{i-1}{2}*\bruch{1}{z+1}+\bruch{i+1}{2}*\bruch{1}{z-1}$ [/mm]

Der 2. Summand rechts ist schon der Hauptteil der gesuchten Laurententwicklung.

Um den Nebenteil zu bekommen, mußt Du den 1. Summanden rechts in eine Potenzreihe um [mm] z_0 [/mm] = 1 entwickeln

Tipp:

                  [mm] \bruch{1}{z+1}= \bruch{1}{2(1+\bruch{z-1}{2})} [/mm]


FRED

Bezug
                
Bezug
Laurentreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:31 Sa 27.06.2009
Autor: Reicheinstein

ah, ok. danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]