matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisLaurentreihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Laurentreihe
Laurentreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurentreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Fr 09.01.2009
Autor: cauchy

Aufgabe
Bestimmen Sie die Laurentreihe der Funktion

[mm] f(z)=\bruch{1}{1-z^2}+\bruch{1}{3-z} [/mm]

a) im Kreisring 1<|z|<3
b) im Kreisring 1<|z-2|<3
c) um den Entwicklungspunkt [mm] z_0=1, [/mm] die im Punkt 1+3i konvergiert.

Liebes Matheraum-Team,

meine Frage bezieht sich auf die a) (bei b) und c) bin ich noch nicht...)
Also: Mit [mm] \bruch{1}{3-z} [/mm] habe ich folgendes gemacht:

[mm] \bruch{1}{3-z}=\bruch{1}{3(1-\bruch{z}{3})}=\bruch{1}{3}\sum_{n=0}^{\infty}{(\bruch{z}{3})^n} [/mm] (geometrische Reihe)
Das ist doch richtig, oder?

Nun bin ich mir nicht sicher, wie ich mit [mm] \bruch{1}{1-z^2} [/mm] verfahren muss. Muss ich eine Partialbruchzerlegung machen? (Hab ich schon gemacht, das wäre nämlich [mm] \bruch{1}{2(1-z)}+\bruch{1}{2(1+z)}, [/mm] da kam ich jedoch bis jetzt nicht weiter) oder ist [mm] \bruch{1}{1-z^2} [/mm] bereits der Grenzwert einer bekannten Reihe (was ich leider nicht sehe...)

Vielen Dank, cauchy


        
Bezug
Laurentreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Fr 09.01.2009
Autor: fred97

Für |z|>1 ist

[mm] \bruch{1}{1-z^2} [/mm] = [mm] \bruch{1}{z^2}*\bruch{1}{1/z^2 - 1} [/mm] = [mm] -\bruch{1}{z^2}*\bruch{1}{1-1/z^2} [/mm] = [mm] -\bruch{1}{z^2}\summe_{n=0}^{\infty}\bruch{1}{z^{2n}} [/mm] = [mm] -\summe_{n=0}^{\infty}\bruch{1}{z^{2n+2}} [/mm]


FRED

Bezug
                
Bezug
Laurentreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Sa 10.01.2009
Autor: cauchy

Oh, das sieht ja eigentlich ganz simpel aus... danke, wär ich nicht drauf gekommen!

Bezug
                
Bezug
Laurentreihe: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:05 Sa 10.01.2009
Autor: cauchy

ok, meine Lösung lautet:

[mm] f(z)=\sum_{n=-\infty}^{-1}{z^{2n}}+\sum_{n=0}^{\infty}{\bruch{z^n}{3^{n+1}}} [/mm]

Hoffe, das ist korrekt.

Ja und nun zu der (b), das kann ja nicht so anders sein!

Meine "Intuition" sagt mir, dass mir, dass die Lösung b sein könnte:

[mm] f(z)=\sum_{n=-\infty}^{-1}{z^{2n}}+\sum_{n=-\infty}^{-1}{\bruch{3^n}{z^{n-1}}} [/mm]

bzw. das könnte man jetzt noch zusammenfassen....

Bezug
                        
Bezug
Laurentreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 So 11.01.2009
Autor: fred97


> ok, meine Lösung lautet:
>  
> [mm]f(z)=\sum_{n=-\infty}^{-1}{z^{2n}}+\sum_{n=0}^{\infty}{\bruch{z^n}{3^{n+1}}}[/mm]
>  
> Hoffe, das ist korrekt.


Das ist es


>  
> Ja und nun zu der (b), das kann ja nicht so anders sein!
>  
> Meine "Intuition" sagt mir, dass mir, dass die Lösung b
> sein könnte:
>  
> [mm]f(z)=\sum_{n=-\infty}^{-1}{z^{2n}}+\sum_{n=-\infty}^{-1}{\bruch{3^n}{z^{n-1}}}[/mm]
>  


Das ist falsch ! Der Entwicklungspunkt ist [mm] z_0 [/mm] = 2


FRED



> bzw. das könnte man jetzt noch zusammenfassen....


Bezug
                                
Bezug
Laurentreihe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:10 So 11.01.2009
Autor: cauchy


> > Ja und nun zu der (b), das kann ja nicht so anders sein!
>  >  
> > Meine "Intuition" sagt mir, dass mir, dass die Lösung b
> > sein könnte:
> >
> [mm]f(z)=\sum_{n=-\infty}^{-1}{z^{2n}}+\sum_{n=-\infty}^{-1}{\bruch{3^n}{z^{n-1}}}[/mm]
>  >  
>
> Das ist falsch ! Der Entwicklungspunkt ist [mm]z_0[/mm] = 2
>  

Ok, da liegt auch mein Fehler. Bei der (a) war [mm] z_0=0 [/mm] der Entwicklungspunkt und nun ist [mm] z_0=2. [/mm] Wie muss ich denn dann meinen Ansatz verändern?

Bezug
                                        
Bezug
Laurentreihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Fr 16.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]