matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisLaurententwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Laurententwicklung
Laurententwicklung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurententwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:09 So 28.03.2010
Autor: Fry

Hallo !

Hab eine Frage zu dem Beweis des Satzes über die Laurenttrennung
Also f soll holomorph sein im Kreisring [mm] K_a(r,R) [/mm] (Unnenradius r,Außenradius R)
Jetzt definiert man sich für p mit r<p<R eine Funktion [mm] f_{2,p} [/mm] auf der Kreisscheibe [mm] D_p(a) [/mm]

[mm] f_{2,p}(z)=\frac{1}{2\pi i}\int_{|\zeta -a|=p}\frac{f(\zeta)}{\zeta - z}d\zeta. [/mm]

Jetzt steht im Fischer-Lieb:
Für r<p<q<R gilt nach dem Cauchyschen Integralsatz [mm] f_{2,p}(z)=f_{2,q}(z) [/mm] auf [mm] D_p(a). [/mm]

Warum gilt das ?


Man muss ja dann wohl zeigen, dass [mm] \frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{\zeta - z}d\zeta=0, [/mm] wobei [mm] \gamma= \partial D_p(a) -\partial D_q(a). [/mm]
Ist mit Cauchy Integralsatz dann der allgemeine Cauchy Integralsatz gemeint ? [mm] $\gamma$ [/mm] ist ja nullhomolog in [mm] K_a(r,R),aber [/mm]  
[mm] \zeta\to \frac{f(\zeta)}{\zeta -z} [/mm] ist ja nicht holomorph auf [mm] K_a(r,R)... [/mm]
blicke da nicht mehr durch....

Könnte mir da jemand weiterhelfen?
Würde mich freuen. Hänge total fest...

Danke
LG
Fry


        
Bezug
Laurententwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 So 28.03.2010
Autor: felixf

Moin Fry!

> Hab eine Frage zu dem Beweis des Satzes über die
> Laurenttrennung
>  Also f soll holomorph sein im Kreisring [mm]K_a(r,R)[/mm]
> (Unnenradius r,Außenradius R)
>  Jetzt definiert man sich für p mit r<p<R eine Funktion
> [mm]f_{2,p}[/mm] auf der Kreisscheibe [mm]D_p(a)[/mm]
>
> [mm]f_{2,p}(z)=\frac{1}{2\pi i}\int_{|\zeta -a|=p}\frac{f(\zeta)}{\zeta - z}d\zeta.[/mm]
>  
> Jetzt steht im Fischer-Lieb:
>  Für r<p<q<R gilt nach dem Cauchyschen Integralsatz
> [mm]f_{2,p}(z)=f_{2,q}(z)[/mm] auf [mm]D_p(a).[/mm]
>  
> Warum gilt das ?
>  
>
> Man muss ja dann wohl zeigen, dass [mm]\frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{\zeta - z}d\zeta=0,[/mm]
> wobei [mm]\gamma= \partial D_p(a) -\partial D_q(a).[/mm]

Genau.

>  Ist mit
> Cauchy Integralsatz dann der allgemeine Cauchy Integralsatz
> gemeint ?

Was auch immer du genau damit meinst ;-) Wie man welche Version des Cauchyschen Integralsatz bezeichnet ist ueberall anders. Es ist zumindest der mit Zykeln gemeint.

> [mm]\gamma[/mm] ist ja nullhomolog in [mm]K_a(r,R),aber[/mm]  
> [mm]\zeta\to \frac{f(\zeta)}{\zeta -z}[/mm] ist ja nicht holomorph
> auf [mm]K_a(r,R)...[/mm]

Ist [mm] $K_a(r, [/mm] R)$ die Kreisscheibe mit inneren Radius $r$ und aeusseren Radius $R$ um $a$? Dann ist [mm] $\zeta \mapsto \frac{f(\zeta)}{\zeta - z}$ [/mm] doch sehr wohl holomorph auf [mm] $K_a(r, [/mm] R)$; Pole hat es ja nur in $a$, ausserhalb von [mm] $D_a(R)$ [/mm] und in $z [mm] \in D_p(a)$, [/mm] und diese liegen alle nicht in [mm] $K_a(r, [/mm] R)$.

LG Felix


Bezug
                
Bezug
Laurententwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:14 So 04.04.2010
Autor: Fry

Hey Felix,

danke für deine Antwort !
Hast vollkommen recht :), manchmal denke ich irgendwie zu kompliziert...

Lieben Gruß
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]