matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseLaufzeit beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Induktionsbeweise" - Laufzeit beweisen
Laufzeit beweisen < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laufzeit beweisen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 12:09 Do 21.04.2011
Autor: Erstie

Aufgabe
T(1) = 1
T(n) = 4T(n/2) + 6n:
Zeigen Sie, dass für beliebige Zweierpotenzen n gilt, dass T(n) = [mm] O(n^2) [/mm] ist. (Tipp: Induktion!)

Hallo,

Ich habe diese Aufgabe folgendermaßen nach der Substituionsmethode gelöst:

Zu zeigen: [mm] T(n)=O(n^2) [/mm]

Induktionsanfang für n=1:
     [mm] T(1)=1^2=1 [/mm] ->korrekt

Induktionsvoraussetzung: [mm] T(n)=n^2 [/mm]

Induktionsschritt: n/2 -> n
     T(n)= 4*T(n/2) + 6n
           = [mm] 4*(n/2)^2 [/mm] + 6n
           = [mm] 4*(n^2/4) [/mm] + 6n
           = [mm] n^2 [/mm] + 6n

Da [mm] (n^2+6n)/n^2 [/mm] = 1+(6/n) gegen 1 konvergiert und [mm] 0<=1<\infty, [/mm] gilt [mm] T(n)=O(n^2) [/mm]

Ist der Indutkionsschritt so richtig?

Diese Aufgabe wurde leider nicht besprochen, aber es wurde gesagt, dass wir auf T(n)<= [mm] 7n^2-6n [/mm] die vollständige Induktion anwenden sollen.

Mir ist nicht klar, wie man von T(n)=4T(n/2)+6n auf [mm] T(n)<=7n^2-6n [/mm] kommt.
Ich hoffe ihr könnt mir weiterhelfen.

Gruß Erstie



        
Bezug
Laufzeit beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Do 21.04.2011
Autor: fred97


> T(1) = 1
>  T(n) = 4T(n/2) + 6n:
>  Zeigen Sie, dass für beliebige Zweierpotenzen n gilt,
> dass T(n) = [mm]O(n^2)[/mm] ist. (Tipp: Induktion!)
>  Hallo,
>  
> Ich habe diese Aufgabe folgendermaßen nach der
> Substituionsmethode

Was iat das denn ?

> gelöst:
>  
> Zu zeigen: [mm]T(n)=O(n^2)[/mm]


Zum Beweis dieser Aussage ist Induktion nun wahrlich nicht geeignet !!

Du sollst zeigen: die Folge [mm] (\bruch{T(2^k)}{2^{2k}}) [/mm]  ist beschränkt.


>  
> Induktionsanfang für n=1:
> [mm]T(1)=1^2=1[/mm] ->korrekt
>  
> Induktionsvoraussetzung: [mm]T(n)=n^2[/mm]
>  
> Induktionsschritt: n/2 -> n
>       T(n)= 4*T(n/2) + 6n
>             = [mm]4*(n/2)^2[/mm] + 6n
>             = [mm]4*(n^2/4)[/mm] + 6n
>             = [mm]n^2[/mm] + 6n
>  
> Da [mm](n^2+6n)/n^2[/mm] = 1+(6/n) gegen 1 konvergiert und
> [mm]0<=1<\infty,[/mm] gilt [mm]T(n)=O(n^2)[/mm]
>  
> Ist der Indutkionsschritt so richtig?
>  
> Diese Aufgabe wurde leider nicht besprochen, aber es wurde
> gesagt, dass wir auf T(n)<= [mm]7n^2-6n[/mm] die vollständige
> Induktion anwenden sollen.

Also: zeige induktiv:  [mm] T(2^k) \le 7*2^{2k}-6*2^k$ [/mm]   für k [mm] \in \IN [/mm]

Wenn Du das geschafft hast , ist die Beschränktheit der Folge   [mm] (\bruch{T(2^k)}{2^{2k}}) [/mm]  sehr einfach zu zeigen.

FRED

>  
> Mir ist nicht klar, wie man von T(n)=4T(n/2)+6n auf
> [mm]T(n)<=7n^2-6n[/mm] kommt.
>  Ich hoffe ihr könnt mir weiterhelfen.
>  
> Gruß Erstie
>  
>  


Bezug
                
Bezug
Laufzeit beweisen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 21:43 Do 21.04.2011
Autor: Erstie

Vielen Dank für die schnelle Antwort.
Dein Hinweis hilft mir da schon etwas weiter.

Mir ist aber immer noch nicht klar, wie man auf T(n)<= $ [mm] 7n^2-6n [/mm] $ kommt. Diese Formel wurde in der Aufgabe nicht vorgegeben.
Hoffe, ihr könnt mir da weiterhelfen.

Bezug
                        
Bezug
Laufzeit beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Do 21.04.2011
Autor: leduart

Hallo
in freds post stand doch wörtlich
"Also: zeige induktiv:  $ [mm] T(2^k) \le 7\cdot{}2^{2k}-6\cdot{}2^k$ [/mm]   für $k  [mm] \in \IN [/mm] $"
da stand nix davon dass die formel "gegeben" ist.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]