matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmen und DatenstrukturenLaufzeit Alogrithmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algorithmen und Datenstrukturen" - Laufzeit Alogrithmen
Laufzeit Alogrithmen < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laufzeit Alogrithmen: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:53 Sa 07.01.2017
Autor: Franhu

Aufgabe
Ab welcher Input-Grösse (Anzahl Datenelemente) ist Algorithmus a schneller als Algorithmus b?
Algorithmus a: T(10'000) = 400ms und f(n) = [mm] n^2 [/mm]
Algorithmus b: T(10'000) = 240ms und f(n) = n * log(n)

Hallo Zusammen

Für die Berechnung von der Laufzeit kenne ich folgende Formel:

[mm] \bruch{T(n)}{T(n_{1})} [/mm] = [mm] \bruch{f(n)}{f(n_{1})} [/mm]

Damit kann ich zum Beispiel die Laufzeit für Alogrithmus a bei n = 100'000 Elementen berechnen.

Ich möchte nun wissen, ab welcher Menge n Algorithmus a von Algorithmus b überholt wird. Wie muss ich die Gleichung gleichsetzen, ich steh grad voll auf der Leitung.

Danke für eure Hife.

Lg Franhu

        
Bezug
Laufzeit Alogrithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Sa 07.01.2017
Autor: Diophant

Hallo,

> Ab welcher Input-Grösse (Anzahl Datenelemente) ist
> Algorithmus a schneller als Algorithmus b?
> Algorithmus a: T(10'000) = 400ms und f(n) = [mm]n^2[/mm]
> Algorithmus b: T(10'000) = 240ms und f(n) = n * log(n)
> Hallo Zusammen

>

> Für die Berechnung von der Laufzeit kenne ich folgende
> Formel:

>

> [mm]\bruch{T(n)}{T(n_{1})}[/mm] = [mm]\bruch{f(n)}{f(n_{1})}[/mm]

>

> Damit kann ich zum Beispiel die Laufzeit für Alogrithmus a
> bei n = 100'000 Elementen berechnen.

>

Über die Gültigkeit der Formel kann ich dir ad hoc gerade nichts sagen (gehen wir davon aus, dass sie stimmt). Was muss dann für den Quotienten

[mm] \frac{f(n)}{f(n_1)}[/mm]

gelten, wenn bspw. f(n) [mm] \supset f(n_1) [/mm] ist? Dabei wäre eigentlich nur noch zu beachten, dass alle beteiligten Werte hier offensichtlich positiv sind.

> Ich möchte nun wissen, ab welcher Menge n Algorithmus a
> von Algorithmus b überholt wird. Wie muss ich die
> Gleichung gleichsetzen, ich steh grad voll auf der
> Leitung.

Betrachte es nicht als Gleichung, sondern als Ungleichung.


Gruß, Diophant

Bezug
        
Bezug
Laufzeit Alogrithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Sa 07.01.2017
Autor: HJKweseleit


> Ab welcher Input-Grösse (Anzahl Datenelemente) ist
> Algorithmus a schneller als Algorithmus b?
>  Algorithmus a: T(10'000) = 400ms und f(n) = [mm]n^2[/mm]
>  Algorithmus b: T(10'000) = 240ms und f(n) = n * log(n)
>  Hallo Zusammen
>  
> Für die Berechnung von der Laufzeit kenne ich folgende
> Formel:
>  
> [mm]\bruch{T(n)}{T(n_{1})}[/mm] = [mm]\bruch{f(n)}{f(n_{1})}[/mm]
>  
> Damit kann ich zum Beispiel die Laufzeit für Alogrithmus a
> bei n = 100'000 Elementen berechnen.

[mm]\bruch{T_a(n)}{T_a(n_{1})}[/mm] = [mm]\bruch{f_a(n)}{f_a(n_{1})}[/mm]  sowie  [mm]\bruch{T_b(n)}{T_b(n_{1})}[/mm] = [mm]\bruch{f_b(n)}{f_b(n_{1})}[/mm]  mit [mm] n_1=10.000. [/mm]

Dabei soll n die gesuchte Anzahl sein, bei der [mm] T_a(n)=T_b(n) [/mm] wird.

Also:[mm]T_a(n)=T_a(n_{1})*\bruch{f_a(n)}{f_a(n_{1})}[/mm]  sowie  [mm]T_b(n)=T_b(n_{1})*\bruch{f_b(n)}{f_b(n_{1})}[/mm]  mit [mm] n_1=10.000 [/mm] und .

[mm] T_a(n)=T_b(n), [/mm] also [mm]T_a(n_{1})*\bruch{f_a(n)}{f_a(n_{1})}[/mm]  = [mm]T_b(n_{1})*\bruch{f_b(n)}{f_b(n_{1})}[/mm]


[mm]400*\bruch{n^2}{10.000^2}[/mm]  = [mm]240*\bruch{n*ln(n)}{10.000*ln(10.000)}[/mm]


[mm]\bruch{400*ln(10.000)}{240*10.000}[/mm]  = [mm]\bruch{ln(n)}{n}[/mm]

Als Näherungslösung (Intervallschachtelung, Newtonsches Näherungsverfahren...) erhältst du für n ungefähr den Wert 1, d.h., nur unter 1 (also: gar nicht) ist a schneller als b.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]