Laplace, div, rot < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [mm] \Delta\times\vec{F} [/mm] = ? |
Ist
[mm] \Delta\times\vec{F} [/mm] = [mm] \nabla(\nabla\times\vec{F})=div(rot \vec{F})=0
[/mm]
oder ist der Ausdruck unsinnig, da
[mm] \Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}
[/mm]
und damit skalar ist?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Gruß fuzzy_mouse
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:58 Do 10.07.2008 | Autor: | Merle23 |
> [mm]\Delta\times\vec{F}[/mm] = ?
> Ist
> [mm]\Delta\times\vec{F}[/mm] = [mm]\nabla(\nabla\times\vec{F})=div(rot \vec{F})=0[/mm]
>
Ich bezweifle, dass du hier das Assoziativgesetz genutzen darfst.
> oder ist der Ausdruck unsinnig, da
> [mm]\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}[/mm]
>
> und damit skalar ist?
Das würd' ich auch sagen.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Gruß fuzzy_mouse
|
|
|
|
|
Hallo, Merle,
danke erst mal für die Antwort. Das Assoziativgesetz kann ich ja sowieso nicht anwenden, da es sich um 2 verschiedene Multiplikationen handelt und das Assoziativgesetz immer nur für eine Operationsart gilt. Die Frage ist: Wenn ich schreibe:
[mm] \Delta\times\vec{F} [/mm] = [mm] \nabla\cdot\nabla\times\vec{F}
[/mm]
Welche Operation hat dann Vorrang:
[mm] \cdot [/mm] vor [mm] \times [/mm] oder
[mm] \times [/mm] vor [mm] \cdot [/mm] ?
Gruß fuzzy_mouse
|
|
|
|
|
> [mm]\Delta\times\vec{F}[/mm] = [mm]\nabla\cdot\nabla\times\vec{F}[/mm]
> Welche Operation hat dann Vorrang:
> [mm]\cdot[/mm] vor [mm]\times[/mm] oder
> [mm]\times[/mm] vor [mm]\cdot[/mm] ?
Zunächst einmal sollte das, was da steht wohldefiniert sein. Was soll denn [mm] $\Delta \times [/mm] F$ sein?
Ich kenne z.B.
[mm] $\Delta F=\nabla \cdot \nabla [/mm] F$
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:52 Do 10.07.2008 | Autor: | Merle23 |
> Hallo, Merle,
> danke erst mal für die Antwort. Das Assoziativgesetz kann
> ich ja sowieso nicht anwenden, da es sich um 2 verschiedene
> Multiplikationen handelt und das Assoziativgesetz immer nur
> für eine Operationsart gilt. Die Frage ist: Wenn ich
> schreibe:
> [mm]\Delta\times\vec{F}[/mm] = [mm]\nabla\cdot\nabla\times\vec{F}[/mm]
Das Problem ist, dass du bei diesem Schritt schon das Assotiativgesetz benutzt hast. Es muss [mm]\Delta\times\vec{F}[/mm] = [mm](\nabla\cdot\nabla)\times\vec{F}[/mm] heissen, d.h. die unten stehende Frage kann gar nicht aufkommen.
> Welche Operation hat dann Vorrang:
> [mm]\cdot[/mm] vor [mm]\times[/mm] oder
> [mm]\times[/mm] vor [mm]\cdot[/mm] ?
>
> Gruß fuzzy_mouse
>
|
|
|
|
|
Hallo, Merle,
Nee, das Assoziativgesetz kann ich gar nicht verwendet haben, weil dieses ein Gruppenaxiom ist und eine Gruppe hat nicht zwei verschiedene Operationen.
Um nochmal deutlich zu machen: In [mm] $\R$ [/mm] gilt ja auch:
[mm] $a+a\cdot [/mm] b = [mm] a+(a\cdot [/mm] b)$ nur, weil es die Regel ''Punkt vor Strich'' gibt, nicht wegen des Assoziativgesetzes.
Ersetze $a$ durch [mm] $\nabla$, [/mm] $b$ durch [mm] $\vec{F}$, [/mm] $+$ durch [mm] $\cdot$ [/mm] und [mm] $\cdot$ [/mm] durch [mm] $\times$, [/mm] dann haben wir
[mm] $\nabla\cdot\nabla\times\vec{F}$. [/mm] Wenn es jetzt zufällig eine Regel '' [mm] $\times$ [/mm] vor [mm] $\cdot$'' [/mm] gäbe, dann wäre
[mm] $\nabla\cdot(\nabla\times\vec{F}) [/mm] = [mm] \div\grad\vec{F}=0$
[/mm]
Das hat ja nix mit dem Assoziativgesetz zu tun. Es muss doch irgendwo geregelt sein, welche Operation Vorrang hat, [mm] $\times$ [/mm] oder [mm] $\cdot$. [/mm] Ich habe nirgends was gefunden, und fand es deshalb nachdenkenswert. Trotzdem noch Ideen?
Gruß fuzzy_mouse
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:04 Do 10.07.2008 | Autor: | Merle23 |
Ne... ich hab was anderes gemeint.
Den Ausdruck [mm]\nabla\cdot\nabla\times\vec{F}[/mm] darfst du nicht hinschreiben, gerade weil es eben diese "Punkt-vor-Strich"-Regel in diesem Fall nicht gibt. Also weil man nicht weiss, was man zuerst rechnen soll, muss man entweder [mm](\nabla\cdot\nabla)\times\vec{F}[/mm] oder [mm]\nabla\cdot(\nabla\times\vec{F})[/mm] schreiben.
(Ok, in diesem konkreten Fall wüsste man, dass wahrscheinlich das Zweite gemeint ist, denn das erste ergibt keinen Sinn. In anderen Fällen könnte man auch einfach davon ausgehen, dass man von links nach rechts rechnet. Aber um solche Verwirrungen von vorn herein auszuschliessen, schreibt man immer Klammern).
Was ich bei dir bemängelt habe, war, dass du [mm]\Delta\times\vec{F}=\nabla\cdot\nabla\times\vec{F}[/mm] geschrieben hast. Das darfst du nicht machen, denn wenn du das [mm] \Delta [/mm] auflöst zu [mm] \nabla\cdot\nabla [/mm] hast du erstmal [mm] (\nabla\cdot\nabla)\times\vec{F} [/mm] dastehen. Und hier darfst du auf keinen Fall die Klammern wegnehmen.
Um das an einem einfachen Beispiel zu verdeutlichen:
Wenn du a+b+c hast, dann ist das eigentlich (wenn man überkorrekt sein will) ein nicht definierter Ausdruck. Definiert sind nur (a+b)+c und a+(b+c). Weil aber für die Addition das Assotiativgesetz gilt, ergeben beide Ausdrücke immer denselben Wert, und deswegen spart man sich einfach die Klammern, weil es ja eh wurscht ist, wie man die setzt.
Nehmen wir an, wir haben die beiden Gleichungen/Terme a=b+c und a+d. Nun würde man ja einfach das a ersetzen und schreibt b+c+d. In Wirklichkeit hat man aber eigentlich zwei Schritte in einem gemacht. Man hat zuerst das a ersetzt: (b+c)+d. Und dann die Klammerung wegen des Assoziativgesetzes entfernt: b+c+d.
|
|
|
|
|
Hallo, Merle,
ok, jetzt macht es Sinn. Wir hatten nämlich eine Klausur mit verschiedenen Ausdrücken und wir sollten die Ausdrücke berechnen, die Sinn machen. Unter anderem der besagte,
[mm] $\Delta\times\vec{F}$. [/mm] Ich habe geschrieben, es mache keinen Sinn (freu!!) und wollte nur nochmal nachträglich sicher sein, dass der Prof nicht anders argumentieren kann.
Thanx mucho
fuzzy_mouse
|
|
|
|
|
Hallo, Merle,
Grrrr, jetzt habe ich keine Vorschau gemacht. Ist wohl doch nicht Latex-kompatibel. Also nochmal:
Nee, das Assoziativgesetz kann ich gar nicht verwendet haben, weil dieses ein Gruppenaxiom ist und eine Gruppe hat nicht zwei verschiedene Operationen.
Um nochmal deutlich zu machen: In R gilt ja auch:
$ [mm] a+a\cdot [/mm] b = [mm] a+(a\cdot [/mm] b) $ nur, weil es die Regel ''Punkt vor Strich'' gibt, nicht wegen des Assoziativgesetzes.
Ersetze a durch $ [mm] \nabla [/mm] $, b durch $ [mm] \vec{F} [/mm] $, + durch $ [mm] \cdot [/mm] $ und $ [mm] \cdot [/mm] $ durch $ [mm] \times [/mm] $, dann haben wir
$ [mm] \nabla\cdot\nabla\times\vec{F} [/mm] $. Wenn es jetzt zufällig eine Regel '' $ [mm] \times [/mm] $ vor $ [mm] \cdot [/mm] $'' gäbe, dann wäre
$ [mm] \nabla\cdot(\nabla\times\vec{F}) [/mm] = div rot [mm] \vec{F}=0 [/mm] $
Das hat ja nix mit dem Assoziativgesetz zu tun. Es muss doch irgendwo geregelt sein, welche Operation Vorrang hat, $ [mm] \times [/mm] $ oder $ [mm] \cdot [/mm] $. Ich habe nirgends was gefunden, und fand es deshalb nachdenkenswert. Trotzdem noch Ideen?
Gruß fuzzy_mouse
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:05 Do 10.07.2008 | Autor: | Merle23 |
Doppelpost. Wurde oben beantwortet.
|
|
|
|