matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLaplace Transformation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Laplace Transformation
Laplace Transformation < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 So 28.12.2008
Autor: mikemodanoxxx

Aufgabe
[Dateianhang nicht öffentlich]

Hallo,

ich hoffe mal ihr könnt mir helfen. Ich glaube ich verrechne mich ständig, finde meinen Fehler allerdings nicht. Ich denke mir ich müsste zumindest halbwegs vernünftige Ergebnisse rausbekommen.

Meine Laplace-Transformierte lauten:

1. [mm] Y_{1}(s+1) [/mm] + [mm] Y_{2}(2s+3)=\bruch{-s}{s+1} [/mm]
2. [mm] Y_{1}(3s-1) [/mm] + [mm] Y_{2}(4s+1)=-3 [/mm]

Umgestellt nach [mm] Y_{2}: [/mm]

1. [mm] Y_{2} [/mm] = [mm] (\bruch{-s}{s+1} [/mm] - [mm] (s+1)Y_{1})\bruch{1}{2s+3} [/mm]
2. [mm] Y_{2} [/mm] = (-3 - [mm] (3s-1)Y_{1})\bruch{1}{4s+1} [/mm]

Gleichgesetzt:

[mm] Y_{1} [/mm] = [mm] \bruch{-s^{2}-7s-3.5}{(s+1)(s-1)(s+2)} [/mm]

Wo ist mein Fehler? Komme wenn ich weiterrechne und Koeff-Vgl mache auf sehr seltsame Ergebnisse..

ciao, Mike.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Laplace Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 So 28.12.2008
Autor: MathePower

Hallo mikemodanoxxx,

> [Dateianhang nicht öffentlich]
>  Hallo,
>  
> ich hoffe mal ihr könnt mir helfen. Ich glaube ich
> verrechne mich ständig, finde meinen Fehler allerdings
> nicht. Ich denke mir ich müsste zumindest halbwegs
> vernünftige Ergebnisse rausbekommen.
>  
> Meine Laplace-Transformierte lauten:
>  
> 1. [mm]Y_{1}(s+1)[/mm] + [mm]Y_{2}(2s+3)=\bruch{-s}{s+1}[/mm]


Hier fehlt doch noch die Anfangsbedingung:

[mm]Y_{1}(s+1) + Y_{2}(2s+3)=\bruch{-s}{s+1}\red{-1}[/mm]



>  2. [mm]Y_{1}(3s-1)[/mm] + [mm]Y_{2}(4s+1)=-3[/mm]
>  
> Umgestellt nach [mm]Y_{2}:[/mm]
>  
> 1. [mm]Y_{2}[/mm] = [mm](\bruch{-s}{s+1}[/mm] - [mm](s+1)Y_{1})\bruch{1}{2s+3}[/mm]
>  2. [mm]Y_{2}[/mm] = (-3 - [mm](3s-1)Y_{1})\bruch{1}{4s+1}[/mm]
>  
> Gleichgesetzt:
>  
> [mm]Y_{1}[/mm] = [mm]\bruch{-s^{2}-7s-3.5}{(s+1)(s-1)(s+2)}[/mm]
>  
> Wo ist mein Fehler? Komme wenn ich weiterrechne und
> Koeff-Vgl mache auf sehr seltsame Ergebnisse..
>  
> ciao, Mike.


Gruß
MathePower

Bezug
                
Bezug
Laplace Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 So 28.12.2008
Autor: mikemodanoxxx

Hi,

die hatte ich doch eigentlich eingebaut. Die Laplace-Transformierte von [mm] e^{-t} [/mm] ist ja [mm] \bruch{1}{s+1} [/mm]

[mm] \bruch{1}{s+1} [/mm] - 1 = [mm] \bruch{1}{s+1} [/mm] - [mm] \bruch{s+1}{s+1} [/mm] = [mm] \bruch{-s}{s+1} [/mm]

Bezug
                        
Bezug
Laplace Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 So 28.12.2008
Autor: MathePower

Hallo mikemodanoxxx,

> Hi,
>  
> die hatte ich doch eigentlich eingebaut. Die
> Laplace-Transformierte von [mm]e^{-t}[/mm] ist ja [mm]\bruch{1}{s+1}[/mm]
>  
> [mm]\bruch{1}{s+1}[/mm] - 1 = [mm]\bruch{1}{s+1}[/mm] - [mm]\bruch{s+1}{s+1}[/mm] =
> [mm]\bruch{-s}{s+1}[/mm]  


Ist aber nicht daraus ersichtlich geworden.

Ich habe hier eine Korrespondenztabelle liegen:

Die Laplace-Transformierte von [mm]e^{\pm a*t}[/mm]

ist [mm]\bruch{1}{s \mp a}, \ Re \ s > Re \ a[/mm]

Dann die Laplace-Transformierte von [mm]-a*e^{-a*t}[/mm]

ist [mm]\bruch{s}{s+a}[/mm]


Gruß
MathePower

Bezug
                                
Bezug
Laplace Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 So 28.12.2008
Autor: mikemodanoxxx

Müsste die dann nicht viel eher [mm] \bruch{-a}{s+a} [/mm] heißen so wie du das geschrieben hast?

Bezug
                                        
Bezug
Laplace Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 So 28.12.2008
Autor: MathePower

Hallo mikemodanoxxx,

> Müsste die dann nicht viel eher [mm]\bruch{-a}{s+a}[/mm] heißen so
> wie du das geschrieben hast?

Wenn ich das ausrechne, dann komme ich auf das, mit der Einschränkung,
daß [mm]\operatorname{Re}\left(s+a\right) > 0[/mm]

Gruß
MathePower


Bezug
                                                
Bezug
Laplace Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 So 28.12.2008
Autor: mikemodanoxxx

ok also sind wir jetzt so weit, dass meine erste Zeile doch richtig war und ich meinen Fehler immer noch nicht habe oder :)?

Bezug
                                                        
Bezug
Laplace Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 So 28.12.2008
Autor: MathePower

Hallo mikemodanoxxx,

> ok also sind wir jetzt so weit, dass meine erste Zeile doch
> richtig war und ich meinen Fehler immer noch nicht habe
> oder :)?


Sieht so aus.

Ich habe aber das [mm]Y_{1}[/mm] aus dem ersten Post nachgerechnet.

Ich komme auf

[mm]Y_{1}=\bruch{2s^{2}+14s+9}{\left(-2\right)\left(s-1\right)\left(s+2\right)\left(s+1\right)}[/mm]

Dann wird wohl der Fehler hier liegen:

[mm]Y_{1}=\bruch{-s^{2}-7s\red{-\bruch{9}{2}}}{\left(s-1\right)\left(s+2\right)\left(s+1\right)}[/mm]

Es hat sich bestätigt, daß das der Fehler ist.

Das ganze stimmt auch.


Gruß
MathePower

Bezug
                                                                
Bezug
Laplace Transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:48 Di 13.01.2009
Autor: mikemodanoxxx

Hm ja dankeschön. Die Aufgabe war wirklich furchtbar, mittlerweile scheine ich aber das richtige Ergebnis zu haben.

ciao, Mike.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]