matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRegelungstechnikLaplace Transf. DGL 2. Ordn.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Regelungstechnik" - Laplace Transf. DGL 2. Ordn.
Laplace Transf. DGL 2. Ordn. < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace Transf. DGL 2. Ordn.: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:30 Mi 07.01.2015
Autor: sargent

Hallo Foren Mitglieder,

ich muss folgende DGL Laplace transformieren

x''+ 2 x' = u (k+1)

um dann anzugeben durch welche Übertragungsglieder sich das System darstellen lässt und wie sie zu verschalten sind.

Für die linke Gleichungsseite habe ich nach der Transformation

s² X(s) + 2s X(s)

Stimmt das soweit?

Bei der rechten Seite bin ich mir unsicher
Kann ich vor der Transformation

u(k+1) = uk + u    
umwandeln und dann transformieren zu

k U(s) + U(s) = U(s) (k+1)

Dann bekomme ich eine Übertragungsfunktion mit der ich nicht so viel anfangen kann.

[mm] \bruch{X(s)}{U(s)} [/mm] = [mm] \bruch{k+1}{s^{2}+2s} [/mm]

Entweder mache ich bei der Transformation etwas falsch oder ich bin nur unfähig mir dafür die richtigen Regler rauszusuchen.

Wäre für eine kleine Hilfestellung dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Laplace Transf. DGL 2. Ordn.: Eine Idee
Status: (Antwort) fertig Status 
Datum: 16:48 Fr 09.01.2015
Autor: Infinit

Hallo sargent,
willkommen hier im Forum.
Deine DGL hat ein etwas komisches Aussehen und dies ist wohl auch der Grund, weswegen sich bisher keiner so richtig gemeldet hat.
Auf der linken Seite hast Du eine kontinuierliche Größe x stehen, auf der rechten Seite jedoch irgendetwas, das wie eine diskrete Zahlenfolge aussieht mit u als Bezeichnung für den Einheitssprung. Das (k+1) sieht mir sehr danach aus, als ob es sich um einen Laufindex handeln würde, dann wären wir bei einer diskreten Zahlenfolge und zu der gehört dann eine z-Transformation. Du siehst, rechte und linke Seite Deiner Gleichung passen so nicht zusammen.
Soll u jedoch auch eine kontinuierliche Größe sein, so könnte Dein Vorschlag in Form eines Multiplikationsfaktors stimmen. Dieser Faktor bliebe auch im Laplacebereich erhalten uns zum Einheitssprung gehört die Laplacetransformierte [mm] \bruch{1}{s} [/mm]. 
Damit wäre man dann bei
[mm] \bruch{X(s)}{U(s)} = \bruch{k+1}{s} \cdot \bruch{1}{s^2 + 2s} [/mm]
Viele Grüße,
Infinit   

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]