matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLaplace-TransformationLaplace-Transformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Laplace-Transformation" - Laplace-Transformation
Laplace-Transformation < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Transformation: Korrektur
Status: (Frage) beantwortet Status 
Datum: 09:15 Do 26.11.2009
Autor: elixia.elixia

Aufgabe
Lösen sie mit Hilfe des Laplace-Formalismus folgendes Anfangswertproblem:

y''+2y'+y=25 sin(2t)   ; y(0)=0  ;   y'(0)=5

Hallo liebe Mitglieder,

ich komme bis zu folgendem Punkt::

y(s) = [mm] \bruch{25}{(s^2+4)\cdot{}(s^2+2s+1)} +\bruch{5}{(s^2+2s+1)} [/mm]

Jetzt habe ich die Nullstellen bestimmt:

s1 = +4
s2 = -4
s3 = 1
s4 = 0

Der nächste Schritt war die Partialbruchzerlegung nur hier bekomme ich totalen Mist heraus.

Könnt Ihr einen Fehler entdecken?



LG Maike

        
Bezug
Laplace-Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 09:32 Do 26.11.2009
Autor: reverend

Hallo Maike,

Deine Nullstellen stimmen nicht. Es gibt nur diese: [mm] s_1=1 [/mm] und [mm] s_2=-1. [/mm]

lg
reverend

Bezug
                
Bezug
Laplace-Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:52 Do 26.11.2009
Autor: elixia.elixia

Oh ja stimmt.

Aber leider hat mich das auch nicht viel weiter gebracht. Stimmt denn y(s)?

Ich glaube nämlich das hier der Fehler begraben liegt.


LG Maike



Bezug
                        
Bezug
Laplace-Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Do 26.11.2009
Autor: MathePower

Hallo elixia.elixia,

> Oh ja stimmt.
>  
> Aber leider hat mich das auch nicht viel weiter gebracht.
> Stimmt denn y(s)?


Nein.


>  
> Ich glaube nämlich das hier der Fehler begraben liegt.
>  


Diese Frage wurde hier schon einmal gestellt.


>
> LG Maike
>  

>


Gruss
MathePower  

Bezug
                                
Bezug
Laplace-Transformation: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:28 Do 26.11.2009
Autor: elixia.elixia

Okay! Dann werde ich mal meine Schritte posten.

[mm] [s^2-Y(s)-s\cdot Y(0)-Y'(0)]+a[s\cdot [/mm] Y(s)-Y(0)]+b [mm] \cdot [/mm] Y(s) = F(s)

hier habe ich jetzt alles eingesetzt und die Originalfunktion von F(s) gebildet.

--> [mm] [s^2-Y(s)-s\cdot 0-5]+2[s\cdot [/mm] Y(s)-0]+Y(s) = [mm] \bruch{25}{s^2+4}\ [/mm]

als nächstes habe ich umgestellt und ausgeklammert

PS.: Habe gerade den Fehler gefunden :) werde jetzt aber trotzdem weiter machen.

--> [mm] Y(s)\cdot [/mm] 2s = [mm] \bruch{25}{(s^2+4)\cdot 2s} +5-s^2 [/mm]

--> Y(s) = [mm] \bruch{25}{(s^2+4)\cdot 2s} +\bruch{5}{2s} [/mm] - [mm] \bruch{s}{2}\ [/mm]

Ist das so richtig??

Ich danke euch.

LG Maike

Bezug
                                        
Bezug
Laplace-Transformation: Rechenweg
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:35 Do 26.11.2009
Autor: xPae

Hallo,

du wirst leider kaum jemanden finden, der dir den kompletten Lösungsweg gibt.
MathePower wollte dir nur damit sagen, dass du Deine Rechenschritte bitte hier posten sollst.
Dann können wir Dir Deine Fehler sagen, diesen Fehler machst du dann nicht noch einmal.

Liebe Grüße

Bezug
                                        
Bezug
Laplace-Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Fr 27.11.2009
Autor: MathePower

Hallo elixia.elixia,

> Okay! Dann werde ich mal meine Schritte posten.
>  
> [mm][s^2-Y(s)-s\cdot Y(0)-Y'(0)]+a[s\cdot[/mm] Y(s)-Y(0)]+b [mm]\cdot[/mm]
> Y(s) = F(s)


Hier muss es doch heißen:

[mm][s^2\red{*}Y(s)-s\cdot Y(0)-Y'(0)]+a[s\cdot Y(s)-Y(0)]+b * Y(s) = F(s)[/mm]


>  
> hier habe ich jetzt alles eingesetzt und die
> Originalfunktion von F(s) gebildet.
>  
> --> [mm][s^2-Y(s)-s\cdot 0-5]+2[s\cdot[/mm] Y(s)-0]+Y(s) =
> [mm]\bruch{25}{s^2+4}\[/mm]


Hier ist ein Übertragungsfehler passiert:

[mm][s^2\red{*}Y(s)-s\cdot\red{Y}\red{(}0\red{)}-\red{Y'}\red{(}0\red{)}]+2[s\cdot Y(s)-\red{Y}\red{(}0\red{)}]+Y(s) =\bruch{25}{s^2+4}[/mm]

Außerdem ist die Laplace-Transformierte von [mm]t*e^{-t}[/mm]  nicht [mm]\bruch{25}{s^2+4}[/mm].


>  
> als nächstes habe ich umgestellt und ausgeklammert
>  
> PS.: Habe gerade den Fehler gefunden :) werde jetzt aber
> trotzdem weiter machen.
>  
> --> [mm]Y(s)\cdot[/mm] 2s = [mm]\bruch{25}{(s^2+4)\cdot 2s} +5-s^2[/mm]
>  
> --> Y(s) = [mm]\bruch{25}{(s^2+4)\cdot 2s} +\bruch{5}{2s}[/mm] -
> [mm]\bruch{s}{2}\[/mm]
>  
> Ist das so richtig??


Nein.


>  
> Ich danke euch.
>  
> LG Maike


Gruss
MathePower

Bezug
                                                
Bezug
Laplace-Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:09 Sa 28.11.2009
Autor: elixia.elixia

Wieso Übertragungsfehler?

Ich muss doch für Y(0) und Y'(0) die gegebenen Werte einsetzen oder nicht?

Oh und bei der Aufgabenstellung habe ich ein Fehler gemacht da muss stehen F(s) = 25 sin(2t) das erklärt auch meinen Bruch mit :

[mm] \bruch{25}{s^2+4} [/mm] da habe ich mich aber verschrieben und meinte [mm] \bruch{50}{s^2+4} [/mm]

oder?

Ich entschuldige mich für die ganze Verwirrung aber ich sitze jetzt schon so lange an dieser Aufgabe und habe offensichtlich nicht bemerkt, dass oben eine falsche Aufgabe steht. Ich habe das ganze jetzt korrigiert.

So jetzt bin ich das ganze noch einmal ganz in Ruhe durch gegangen und komme auf :

Y(s) = [mm] \bruch{50}{(s^2+4)\cdot (s^2+2s+1)} +\bruch{5}{s^2+2s+1} [/mm]

Und ab hier komme ich nicht weiter.

Partialbruchzerlegung habe ich versucht, da bekomme ich aber irgendwie nur Mist raus. Bzw. habe ich nur eine Nullstelle, die bei -1 liegt und damit kann ich nichts anfangen.

Hmm..

Oder gibt es eine andere Möglichkeit die Geschichte zu lösen? Kann ich mir das evtl. in irgendeiner Form vereinfachen?

LG Maike






Bezug
                                                        
Bezug
Laplace-Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:56 Sa 28.11.2009
Autor: rainerS

Hallo Maike!

> Wieso Übertragungsfehler?
>  
> Ich muss doch für Y(0) und Y'(0) die gegebenen Werte
> einsetzen oder nicht?

Ja, aber du hast für $y(0)$ den Wert 0 eingesetzt; in der Aufgabe steht aber $y(0)=1$.

Deswegen stimmt auch dein Ergebnis weiter unten nicht.

Viele Grüße
   Rainer

Bezug
        
Bezug
Laplace-Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 Sa 28.11.2009
Autor: elixia.elixia

Ich entschuldige mich für die ganze Verwirrung aber ich sitze jetzt schon so lange an dieser Aufgabe und habe offensichtlich nicht bemerkt, dass oben eine falsche Aufgabe steht. Ich habe das ganze jetzt korrigiert.

So jetzt bin ich das ganze noch einmal ganz in Ruhe durch gegangen und komme auf :

Y(s) = [mm] \bruch{50}{(s^2+4)\cdot (s^2+2s+1)} +\bruch{5}{s^2+2s+1} [/mm]

Und ab hier komme ich nicht weiter.

Partialbruchzerlegung habe ich versucht, da bekomme ich aber irgendwie nur Mist raus. Bzw. habe ich nur eine Nullstelle, die bei -1 liegt und damit kann ich nichts anfangen.

Hmm..

Oder gibt es eine andere Möglichkeit die Geschichte zu lösen? Kann ich mir das evtl. in irgendeiner Form vereinfachen?

LG Maike

Bezug
                
Bezug
Laplace-Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Sa 28.11.2009
Autor: rainerS

Hallo Maike!

> Ich entschuldige mich für die ganze Verwirrung aber ich
> sitze jetzt schon so lange an dieser Aufgabe und habe
> offensichtlich nicht bemerkt, dass oben eine falsche
> Aufgabe steht. Ich habe das ganze jetzt korrigiert.

AH, das erklärt manches ;-)

>
> So jetzt bin ich das ganze noch einmal ganz in Ruhe durch
> gegangen und komme auf :
>
> Y(s) = [mm]\bruch{50}{(s^2+4)\cdot (s^2+2s+1)} +\bruch{5}{s^2+2s+1}[/mm]

[ok]
  

> Und ab hier komme ich nicht weiter.
>
> Partialbruchzerlegung habe ich versucht, da bekomme ich
> aber irgendwie nur Mist raus. Bzw. habe ich nur eine
> Nullstelle, die bei -1 liegt und damit kann ich nichts
> anfangen.

Erst einmal schreibe [mm] $s^2+2s+1=(s+1)^2$, [/mm] denn dann wird dein Problem einfacher.

Für den ersten Summanden machst du PBZ:

[mm] \bruch{50}{(s^2+4)\cdot (s^2+2s+1)} = \bruch{A+Bs}{s^2+4} + \bruch{C}{s+1} + \bruch{D}{(s+1)^2} [/mm].

($A,B,C,D$ rechnest du aus; das rechne ich dir nicht vor)

Dann ergibt sich

[mm] \bruch{50}{(s^2+4)\cdot (s^2+2s+1)} +\bruch{5}{s^2+2s+1} = \bruch{A+Bs}{s^2+4} + \bruch{C}{s+1} + \bruch{D+5}{(s+1)^2} = \bruch{A}{2} \bruch{2}{s^2+4} + B \bruch{s}{s^2+4} + \bruch{C}{s+1} + \bruch{D+5}{(s+1)^2}[/mm].

Die Rücktransformation der einzelnen Summanden solltest du auch wieder allein können.

Viele Grüße
   Rainer




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]