matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisLaplace-Transformation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Laplace-Transformation
Laplace-Transformation < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:06 Do 02.03.2006
Autor: kruder

Aufgabe
Bestimmen Sie mit Hilfe der Definitionsgleichung der Laplace-Transformation die Bildfunktion der folgenden Orginalfunktionen:

1.)  [mm] f(t)=2*t*e^{-4*t} [/mm]
2.)  [mm] f(t)=e^{\delta-*t}*sin(\omega*t) [/mm]
3.)  f(t)= sinh(a*t)
4.)  [mm] f(t)=t^{3} [/mm]
5.)  [mm] f(t)=sin^{2}(t) [/mm]

Die Ergebnisse die ich habe lauten:

1.) [mm] F(s)=\bruch{2}{(s+4)^2} [/mm]

2.) [mm] F(s)=\bruch{\omega}{s^{2}+2*\delta*s+\omega^{2}+\delta^{2}} [/mm]

3.) [mm] F(s)=\bruch{-1}{2*(s+a)} [/mm]

4.) [mm] F(s)=\bruch{6}{s^{4}} [/mm]

5.) [mm] F(s)=\bruch{2}{s*(s^{2}+4)} [/mm]

Sind die Ergebnisse richtig? Oder habe ich Fehler gemacht?
Gruß & vielen Dank fürs Antworten
kruder


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Laplace-Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Do 02.03.2006
Autor: Herby

Hallo Kruder,

> Bestimmen Sie mit Hilfe der Definitionsgleichung der
> Laplace-Transformation die Bildfunktion der folgenden
> Orginalfunktionen:
>  
> 1.)  [mm]f(t)=2*t*e^{-4*t}[/mm]
>  2.)  [mm]f(t)=e^{\delta-*t}*sin(\omega*t)[/mm]
>  3.)  f(t)= sinh(a*t)
>  4.)  [mm]f(t)=t^{3}[/mm]
>  5.)  [mm]f(t)=sin^{2}(t)[/mm]

>  Die Ergebnisse die ich habe lauten:

  

> 1.) [mm]F(s)=\bruch{2}{(s+4)^2}[/mm]

[ok]
  

> 2.) [mm] F(s)=\bruch{\omega}{s^{2}+2*\delta*s+\omega^{2}+\delta^{2}} [/mm]

[ok] nur, wenn die Funktion so heißt: [mm] f(t)=e^{-\delta*t}*sin(\omega*t) [/mm]
außerdem sieht es schöner aus, wenn du den Nenner "binomisch" zusammen fasst.
  

> 3.) [mm]F(s)=\bruch{-1}{2*(s+a)}[/mm]

hmm, ich hab da was anderes, kann mich aber auch täuschen ;-)


> 4.) [mm]F(s)=\bruch{6}{s^{4}}[/mm]

[ok]


> 5.) [mm]F(s)=\bruch{2}{s*(s^{2}+4)}[/mm]

[ok]
  


alle Angaben ohne Gewähr


Liebe Grüße
Herby

Bezug
                
Bezug
Laplace-Transformation: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:59 Do 02.03.2006
Autor: kruder

Hallo Herby,


> > Bestimmen Sie mit Hilfe der Definitionsgleichung der
> > Laplace-Transformation die Bildfunktion der folgenden
> > Orginalfunktionen:
>  >  
> > 1.)  [mm]f(t)=2*t*e^{-4*t}[/mm]
>  >  2.)  [mm]f(t)=e^{\delta-*t}*sin(\omega*t)[/mm]
>  >  3.)  f(t)= sinh(a*t)
>  >  4.)  [mm]f(t)=t^{3}[/mm]
>  >  5.)  [mm]f(t)=sin^{2}(t)[/mm]
>  
> > 2.)
> [mm]F(s)=\bruch{\omega}{s^{2}+2*\delta*s+\omega^{2}+\delta^{2}}[/mm]
>  
> [ok] nur, wenn die Funktion so heißt:
> [mm]f(t)=e^{-\delta*t}*sin(\omega*t)[/mm]
>  außerdem sieht es schöner aus, wenn du den Nenner
> "binomisch" zusammen fasst.

Ja, das sollte es auch heißen. Stimmt sieht eleganter aus...

>    
> > 3.) [mm]F(s)=\bruch{-1}{2*(s+a)}[/mm]
>  
> hmm, ich hab da was anderes, kann mich aber auch täuschen
> ;-)

habs gerade nochmal nachgerechnet :

nach der Integration habe ich [mm] \bruch{e^{t*(-s-a)}}{2*(s+a)}-\bruch{e^{t*(a-s)}}{2*(s-a)} [/mm]

beim einsetzen der Grenzen komme ich auf:

[mm] [\bruch{-1}{2*(s-a)}]-[\bruch{1}{2*(s+a)}-\bruch{1}{2*(s-a)}] [/mm]

woraus sich dann wiederum [mm] \bruch{-1}{2*(s+a)} [/mm] ergibt...

Wie hast Du diese Aufgabe denn gelöst?

Gruß & Danke
kruder

Bezug
                        
Bezug
Laplace-Transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:11 Fr 03.03.2006
Autor: Herby

Hallo kruder,

> >    

> > > 3.) [mm]F(s)=\bruch{-1}{2*(s+a)}[/mm]
>  >  
> > hmm, ich hab da was anderes, kann mich aber auch täuschen
> > ;-)
>  
> habs gerade nochmal nachgerechnet :
>  
> nach der Integration habe ich
> [mm]\bruch{e^{t*(-s-a)}}{2*(s+a)}-\bruch{e^{t*(a-s)}}{2*(s-a)}[/mm]



zuerst einmal hab' ich das andersherum:

[mm] \bruch{e^{t*(a-s)}}{2*(s-a)}+\bruch{e^{t*(-s-a)}}{2*(s+a)} [/mm]

und das ist gleich:

[mm] \bruch{e^{a*t-s*t}}{2*(s-a)}+\bruch{e^{t*(-s-a)}}{2*(s+a)} [/mm]

und das ist gleich:

[mm] \bruch{\red{e^{a*t}}*e^{-s*t}}{2*(s-a)}+\bruch{e^{t*(-s-a)}}{2*(s+a)} [/mm]


du siehst im Zähler ein [mm] e^{a*t} [/mm] und das verabschiedet sich für t gegen [mm] \infty [/mm] nie - ganz im Gegenteil.


aber wie schon gesagt, ich kann natürlich auch daneben liegen - daher lasse ich deine Frage "offen" und es wäre schön, wenn sich dieser Aufgabe noch jemand annehmen würde.
Falls du zwischenzeitlich die korrekte Lösung herausbekommst, dann stelle sie bitte hier herein.



Liebe Grüße
Herby

Bezug
                        
Bezug
Laplace-Transformation: nu ham' wa's
Status: (Antwort) fertig Status 
Datum: 21:42 So 05.03.2006
Autor: Herby

Hi,

zur Lösung des Problems :-)


ich hatte die ganze Zeit ein [mm] e^{-st} [/mm] als Faktor verdölmert:


[mm] \integral{\bruch{1}{2}*(e^{at}-e^{-at})*e^{-st} dt}=\bruch{(e^{-st})^{\bruch{a}{s}+1}*a-(e^{-st})^{\bruch{a}{s}+1}*s+(e^{-st})^{\bruch{-a}{s}+1}*a+(e^{-st})^{\bruch{-a}{s}+1}*s}{2*(a-s)*(a+s)} [/mm]

setze ich die Grenzen ein, so bleibt lediglich:

[mm] \bruch{2*a}{2*(a-s)*(a+s)}=\bruch{a}{a²-s²} [/mm]


und das war's auch schon [grins]


Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]