matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLaplace-TransformationLaplace-Transformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Laplace-Transformation" - Laplace-Transformation
Laplace-Transformation < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Sa 22.03.2014
Autor: Himalia

Aufgabe
Bestimmen Sie mit Hilfe der Definition der Laplace-Transformation die Bildfunktionen der
folgenden Originalfunktionen:

f(t)=sinh(at)  

Vergleichen Sie die Ergebnisse mit der Korrespondenztafel.

Hi,
brauche eure Hilfe bei dieser Aufgabe.

habe diese Aufgabe schon hier gestellt aber bis jetzt noch keine Antwort erhalten:
http://www.matheboard.de/thread.php?threadid=538453


Idee:

[mm] sinh(at)=\frac{e^{at}-e^{-at}}{2} [/mm]  

  [mm] \int_0^\infty \! f(t)*e^{-st} \, [/mm] dt  

[mm] =\int_0^\infty \! sinh(at)*e^{-st} \, [/mm] dt  

[mm] =\int_0^\infty \! \frac{e^{at}-e^{-at}}{2} *e^{-st} \, [/mm] dt  

  [mm] =\frac{1}{2} \int_0^\infty \! (e^{at}-e^{-at}) *e^{-st} \, [/mm] dt  

[mm] =\frac{1}{2} \int_0^\infty \! e^{at}*e^{-st}-e^{-at} *e^{-st} \, [/mm] dt  

=  [mm] \frac{1}{2} \int_0^\infty \! e^{at}*e^{-st}\, [/mm] dt [mm] -\frac{1}{2} \int_0^\infty \!e^{-at} *e^{-st} \, [/mm] dt  

= [mm] \frac{1}{2} \int_0^\infty \! e^{at-st}\, [/mm] dt [mm] -\frac{1}{2} \int_0^\infty \!e^{-at-st} \, [/mm] dt  

[mm] =\left[\frac{1}{2*(a-s)}*e^{at-st} \right]_0^\infty [/mm] + [mm] \left[-\frac{1}{2*(-a-s)}*e^{-at-st} \right]_0^\infty [/mm]    

[mm] =\left[\frac{1}{2*(a-s)}*e^{at-st} \right]_0^\infty [/mm] + [mm] \left[(0)-(-\frac{1}{2*(-a-s)}) \right] [/mm]    

Beim linken Teil weiß ich nicht was bei unendlich passiert :(
Da ich nicht weiß ob die Konstante a oder s größer ist.


        
Bezug
Laplace-Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Sa 22.03.2014
Autor: Valerie20


> Bestimmen Sie mit Hilfe der Definition der
> Laplace-Transformation die Bildfunktionen der
> folgenden Originalfunktionen:

>

> f(t)=sinh(at)

>

> Vergleichen Sie die Ergebnisse mit der Korrespondenztafel.
> Hi,
> brauche eure Hilfe bei dieser Aufgabe.

>

> habe diese Aufgabe schon hier gestellt aber bis jetzt noch
> keine Antwort erhalten:
> http://www.matheboard.de/thread.php?threadid=538453

>
>

> Idee:

>

> [mm]sinh(at)=\frac{e^{at}-e^{-at}}{2}[/mm]

>

> [mm]\int_0^\infty \! f(t)*e^{-st} \,[/mm] dt

>

> [mm]=\int_0^\infty \! sinh(at)*e^{-st} \,[/mm] dt

>

> [mm]=\int_0^\infty \! \frac{e^{at}-e^{-at}}{2} *e^{-st} \,[/mm] dt

>
>

> [mm]=\frac{1}{2} \int_0^\infty \! (e^{at}-e^{-at}) *e^{-st} \,[/mm]
> dt

>

> [mm]=\frac{1}{2} \int_0^\infty \! e^{at}*e^{-st}-e^{-at} *e^{-st} \,[/mm]
> dt

>

> = [mm]\frac{1}{2} \int_0^\infty \! e^{at}*e^{-st}\,[/mm] dt
> [mm]-\frac{1}{2} \int_0^\infty \!e^{-at} *e^{-st} \,[/mm] dt

>

> = [mm]\frac{1}{2} \int_0^\infty \! e^{at-st}\,[/mm] dt [mm]-\frac{1}{2} \int_0^\infty \!e^{-at-st} \,[/mm]
> dt

>

> [mm]=\left[\frac{1}{2*(a-s)}*e^{at-st} \right]_0^\infty[/mm] +
> [mm]\left[-\frac{1}{2*(-a-s)}*e^{-at-st} \right]_0^\infty[/mm]

>

> [mm]=\left[\frac{1}{2*(a-s)}*e^{at-st} \right]_0^\infty[/mm] +
> [mm]\left[(0)-(-\frac{1}{2*(-a-s)}) \right][/mm]

>

> Beim linken Teil weiß ich nicht was bei unendlich passiert
> :(
> Da ich nicht weiß ob die Konstante a oder s größer
> ist.

>

Es reicht dort zu schreiben, dass die Laplace Trafo nur konvergiert, wenn $s>|a|$ ist.
Andernfalls divergiert diese.

Du hast bisher also alles richtig gemacht.
Bringe nun noch alles auf einen Hauptnenner.
Du solltest dabei die binomischen Formeln beachten. Speziell die dritte.
 

Bezug
                
Bezug
Laplace-Transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 Sa 22.03.2014
Autor: Himalia

Könnte man das auch so schreiben?
-->  s> a >0



Rechnung:
--> für s>|a|

[mm] \left[(0)-(\frac{1}{2*(a-s)}) \right] [/mm] + [mm] \left[(0)-(-\frac{1}{2*(-a-s)}) \right] [/mm]

[mm] =-\frac{1}{2*(a-s)}+ \frac{1}{2*(-a-s)} [/mm]

= [mm] \frac{a}{s^2-a^2} [/mm]

So ?





Bezug
                        
Bezug
Laplace-Transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:11 So 23.03.2014
Autor: Valerie20

[ok]

Aber stelle deine Fragen doch in Zukunft auch als Frage... Also benutze den roten Button für Rückfragen.
Ansonsten kann es passieren dass deine Fragen untergehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]