matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisLaplace-Operator
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - Laplace-Operator
Laplace-Operator < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Operator: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:25 Mo 04.08.2008
Autor: Denny22

Aufgabe
Sei [mm] $\Omega\subset\IR^{d}$ [/mm] eine Gebiet mit [mm] $d\in\IN$ [/mm]

[mm] A\,:=\,-\triangle:\;L^2(\Omega)\supset\D(A)=H^2(\Omega)\cap H_0^1(\Omega)\longrightarrow R(A)=L^2(\Omega)\;\text{mit}\; u(x)\longmapsto -\sum_{i=1}^{d}\frac{\partial^2 u}{\partial x_i^2}(x) [/mm]

Hallo an alle,

ich habe zwei kurze Verständnisfragen.

1) Liege ich richtig mit der Annahme, dass der Laplace-Operator ein auf [mm] $L^2(\Omega)$ [/mm] unbeschränkter (und damit weder ein stetiger noch ein kompakter Operator) ist?

2) Liege ich richtig damit, dass der Laplace-Operator auf dem "richtigen" Definitionsbereich [mm] $H^2(\Omega)\cap H_0^1(\Omega)$ [/mm] ein beschränkter (und damit stetiger und kompakter) Operator ist?

Vielen Dank schon einmal für die Hilfe.

Gruß

        
Bezug
Laplace-Operator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:07 Fr 08.08.2008
Autor: Denny22

Hallo, hat keiner eine Ahnung was die Beschränktheit des Laplace-Operators anbelangt? Also meine Idee:

zu 1)
Also ich denke, dass der Laplace-Operator auf [mm] $L^2(\Omega)$ [/mm] unbeschränkt ist. Ein leichtes Gegenbeispiel sollte die folgende Funktion
sein:

[mm] $f(x)=e^{-kx}\in L^2(\Omega)$ [/mm] für [mm] ($k\in\IN$) [/mm]

Sie ist zum einen quadratintegrabel, d.h. sie liegt in [mm] $L^2(\Omega)$, [/mm] und lässt sich für jedes feste [mm] $k\in\IN$ [/mm] abschätzen durch

[mm] $\Vert{Af}\Vert_{L^2}=k\cdot\Vert{f}\Vert_{L^2}\quad\forall\,k\in\IN$ [/mm]

Damit finden wir aber keine Konstante $C>0$ mit [mm] $\Vert{Af}\Vert_{L^2}\leqslant C\cdot\Vert{f}\Vert_{L^2}\quad\forall\,f\in L^2(\Omega)$ [/mm] und somit ist der Operator $A$ auf [mm] $L^2(\Omega)$ [/mm] unbeschränkt.

zu 2)
Zum anderen entspricht [mm] $\Vert{Af}\Vert_{L^2}$ [/mm] etwa [mm] $\vert{f}\vert_{H^2}$. [/mm] Somit gilt

[mm] $\Vert{Af}\Vert_{L^2}\,\leqslant\,C\cdot\Vert{f}\Vert_{H^2}\quad\forall\,f\in H^2(\Omega)\cap H_0^1(\Omega)$ [/mm]

trivialerweise.

Hat irgendjemand Einwände?

Bezug
        
Bezug
Laplace-Operator: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:25 Fr 08.08.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]