matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikLaplace-Experimente
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Laplace-Experimente
Laplace-Experimente < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Experimente: Korrektur / Tipp
Status: (Frage) beantwortet Status 
Datum: 14:34 Fr 10.09.2010
Autor: Yamagi

Aufgabe
Gegeben seien Laplace-Experimente auf den Merkmalräumen [mm] $\{1,2,3\}$ [/mm] und [mm] $\{1,2\}$. [/mm]

a) Bestimmen Sie den Wahrscheinlichkeitsraum [mm] $(\Omega, \mathcal{A}, [/mm] P)$ für eine unabhängige Kopplung der beiden Experimente, wobei $P$ durch die Zähldichte $f$ angegeben werde. Hinweis: [mm] $\Omega$ [/mm] sollte ein Produktraum sein.

b) $X$ sei die Summenvariable, welche die Ergebnisse [mm] $(\omega_1, \omega_2)$ [/mm] der beiden Einzelexperimente addiert. [mm] $\Omega \ni (\omega_1, \omega_2) \mapsto X(\omega_1, \omega_2) [/mm] = [mm] \omega_1 [/mm] + [mm] \omega_2$. [/mm] Bestimmen Sie die Zähldichte [mm] $f^x$ [/mm] des Bildmaßes [mm] $P^x$. [/mm]

c) Bestimmen Sie die Wahrscheinlichkeit des Ereignisses [mm] $\{X \in \{4,5\}\}$. [/mm]

d) Bestimmen Sie [mm] $P^x (\{2,3\})$. [/mm]

Ich habe nun versucht diese Aufgabe zu lösen, so gut ich es kann. Leider existiert für diese keine Musterlösung. Daher ist meine Frage, ob mein Lösungsweg korrekt ist. Sollte es Fehler geben, wäre ich für einen Hinweis in die richtige Richtung dankbar. :)

a) Wir haben zwei Merkmalräume [mm] \Omega_1 [/mm] = {1,2,3} und [mm] \Omega_2 [/mm] = {1,2}. Dies kreuze ich zu einem gemeinsamen Merkmalraum: [mm] \Omega_x [/mm] = [mm] \Omega_1 [/mm] x [mm] \Omega_2. [/mm]

b) Dieser neue Merkmalraum aus Teil a) hat 3 * 2 = 6 Elemente. Die Wahrscheinlichkeit ist also [mm] $\bruch{1}{|\Omega|}$ [/mm] = [mm] $\bruch{1}{6}$. [/mm]

c) Hier habe ich überlegt, dass erst einmal sehen muss, wie oft die 4 und die 5 im neuen Merkmalraum [mm] \Omega_x [/mm] vorkommen. Dazu habe ich eine Tabelle aufgestellt:
Zahl:      2  3  4  5
Auftreten: 1  2  2  1

Für "4" ergibt sich so [mm] \bruch{2}{6} [/mm] und für "5" [mm] \bruch{1}{6}. [/mm] Diese addiert man auf und bekommt für das Ereignis die Wahrscheinlichkeit [mm] \bruch{3}{6} [/mm] = [mm] \bruch{1}{2}. [/mm]

d) Die Wahrscheinlichkeit von [mm] P^x({2,3}) [/mm] ist nach der Tabelle aus c) [mm] \bruch{1}{6} [/mm] * [mm] \bruch{2}{6} [/mm] = [mm] \bruch{2}{36} [/mm] = [mm] \bruch{1}{18}. [/mm]

Disclaimer: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Laplace-Experimente: Unklarheit bei d)
Status: (Antwort) fertig Status 
Datum: 12:10 Sa 11.09.2010
Autor: Al-Chwarizmi


> Gegeben seien Laplace-Experimente auf den Merkmalräumen
> [mm]\{1,2,3\}[/mm] und [mm]\{1,2\}[/mm].
>  
> a) Bestimmen Sie den Wahrscheinlichkeitsraum [mm](\Omega, \mathcal{A}, P)[/mm]
> für eine unabhängige Kopplung der beiden Experimente,
> wobei [mm]P[/mm] durch die Zähldichte [mm]f[/mm] angegeben werde. Hinweis:
> [mm]\Omega[/mm] sollte ein Produktraum sein.
>  
> b) [mm]X[/mm] sei die Summenvariable, welche die Ergebnisse
> [mm](\omega_1, \omega_2)[/mm] der beiden Einzelexperimente addiert.
> [mm]\Omega \ni (\omega_1, \omega_2) \mapsto X(\omega_1, \omega_2) = \omega_1 + \omega_2[/mm].
> Bestimmen Sie die Zähldichte [mm]f^x[/mm] des Bildmaßes [mm]P^x[/mm].
>  
> c) Bestimmen Sie die Wahrscheinlichkeit des Ereignisses [mm]\{X \in \{4,5\}\}[/mm].
>  
> d) Bestimmen Sie [mm]P^x (\{2,3\})[/mm].
>  Ich habe nun versucht
> diese Aufgabe zu lösen, so gut ich es kann. Leider
> existiert für diese keine Musterlösung. Daher ist meine
> Frage, ob mein Lösungsweg korrekt ist. Sollte es Fehler
> geben, wäre ich für einen Hinweis in die richtige
> Richtung dankbar. :)
>  
> a) Wir haben zwei Merkmalräume [mm]\Omega_1[/mm] = {1,2,3} und
> [mm]\Omega_2[/mm] = {1,2}. Dies kreuze ich zu einem gemeinsamen
> Merkmalraum: [mm]\Omega_x[/mm] = [mm]\Omega_1[/mm] x [mm]\Omega_2.[/mm]
>
> b) Dieser neue Merkmalraum aus Teil a) hat 3 * 2 = 6
> Elemente. Die Wahrscheinlichkeit ist also
> [mm]\bruch{1}{|\Omega|}[/mm] = [mm]\bruch{1}{6}[/mm].

       (für jedes einzelne Element in [mm] \Omega [/mm]  !)

>
> c) Hier habe ich überlegt, dass erst einmal sehen muss,
> wie oft die 4 und die 5 im neuen Merkmalraum [mm]\Omega_x[/mm]
> vorkommen. Dazu habe ich eine Tabelle aufgestellt:
>  Zahl:      2  3  4  5
> Auftreten: 1  2  2  1
>  
> Für "4" ergibt sich so [mm]\bruch{2}{6}[/mm] und für "5"
> [mm]\bruch{1}{6}.[/mm] Diese addiert man auf und bekommt für das
> Ereignis die Wahrscheinlichkeit [mm]\bruch{3}{6}[/mm] =
> [mm]\bruch{1}{2}.[/mm]
>  
> d) Die Wahrscheinlichkeit von [mm]P^x(\{2,3\})[/mm] ist nach der
> Tabelle aus c) [mm]\bruch{1}{6}[/mm] * [mm]\bruch{2}{6}[/mm] = [mm]\bruch{2}{36}[/mm]
> = [mm]\bruch{1}{18}.[/mm]


Hallo Yamagi,

bis zu c) scheint alles richtig zu sein. Nur bei d) habe
ich ein kleines Problem, weil mir nicht klar ist, was  
genau mit  [mm]P^x(\{2,3\})[/mm]  überhaupt gemeint ist ...
Du interpretierst es offenbar so, dass bei zweimaliger
Durchführung des "Doppelexperiments" beim ersten
Mal die Summe x=2 und beim zweiten Mal die Summe x=3
entsteht. Dann sind mir allerdings die geschweiften
Klammern bzw. Mengenklammern im Ausdruck  [mm]P^x(\{2,3\})[/mm]  über-
haupt nicht einleuchtend !

LG    Al-Chw.

Bezug
                
Bezug
Laplace-Experimente: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 So 12.09.2010
Autor: Yamagi

Hallo, danke erst einmal für deine Bestätigung, dass ich bei den ersten 3 Teilaufgaben korrekt gedacht habe. Ich habe noch einmal nachgeschaut, ob ich Aufgabenteil d) wirklich richtig abgetippt habe. Habe ich (leider), so wie es hier steht, steht es auch auf dem Aufgabenzettel. :)

Bezug
                        
Bezug
Laplace-Experimente: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:34 Mo 20.09.2010
Autor: Dreamerkid

Ist mit [mm] P^{x} [/mm] bei d) nicht das Bildmaß gemeint ?

Dazu hab ich folgendes gefunden :

Formal wird die Verteilung [mm] P^{X} [/mm] einer Zufallsvariablen X; als das Bildmaß des Wahrscheinlichkeitsmaßes P definiert, also

[mm] P^{x}(A)= P(X^{-1}(A)) [/mm] für alle A [mm] \in \summe{^'} [/mm]

Bezug
        
Bezug
Laplace-Experimente: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:24 Mo 20.09.2010
Autor: Dreamerkid

Hi, ich sitz seit Tagen auch schon an dieser Aufgabe,
musst du bei a) nich auch noch A und P ( [mm] Omega,\mathcal{A},\mathcal{P}) [/mm]
angeben ? Und wenn ja haste vielleicht ne Ahnung
wie man [mm] \mathcal{P} [/mm] dann in der Zähldichte angibt ?

Und  bei b) genauso, wie sieht da die Zähldichte aus ?
Is das diese : [mm] f^{x}(w^{'}) [/mm] = P(X= [mm] w^{'}) [/mm] , [mm] w^{'} \in omega^{'} [/mm]

Bezug
                
Bezug
Laplace-Experimente: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 22.09.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]