matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesLandausymbole
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Landausymbole
Landausymbole < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Landausymbole: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 Mo 14.01.2008
Autor: Mirage.Mirror

[Dateianhang nicht öffentlich]


Wir haben Landausymbole durchgenommen, aber es hat bei mir noch nicht klick gemacht. Wenn mir jemand auch unabhängig von den aufgaben, nochmal kurz zusammenfassend einleuchtend erklären kann, was das genau ist wäre ich auch schon dankbar ^^

zu a)
Leider ist mir nicht klar, wie genau ich auf diese [mm] \Rightarrow [/mm] kommen soll, Wie muss ich das denn umstellen, um auf diese Ergebnisse zu kommen?

zu b)
Hier hatte ich eigentlich ganz nurmal versucht Stetigkeit und Differenziertheit zu beweisen, aber  das hatte dann nichts mit den Landausymbolen zu tun und ich weiß nciht, wie ich das damit zeigen kann.

zu c)
ähnlich wie bei a weiß ich nicht, wie das aufzulösen ist, wenn man mir hier nur auf die Sprünge hilft reicht das hoffentlich.


Im Voraus schonmal vielen lieben Dank für alle hilfen, die sich anbieten.


Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Landausymbole: Bitte löschen
Status: (Antwort) fertig Status 
Datum: 00:05 Di 15.01.2008
Autor: Marcel


Bezug
        
Bezug
Landausymbole: Antwort
Status: (Antwort) fertig Status 
Datum: 00:14 Di 15.01.2008
Autor: Marcel

Hallo,

also $f(x)=O(g(x))$ bedeutet nichts anderes, als dass die Funktion $x [mm] \mapsto \frac{f(x)}{g(x)}$ [/mm] auf einer Umgebung von [mm] $x_0$ [/mm] beschränkt ist. Bei dem $f(x)=o(g(x))$ fällt mir nichts anderes ein, als Dir nochmal zu sagen:
Lies' einfach die Definition ;-)

Bei den Aufgaben wirst Du vermutlich eh keine großartigen Tricks brauchen. Machen wir mal bspw. die

a) i):
Sei dort also $f(x)=o(g(x))$ für $x [mm] \to x_0$, [/mm] d.h. es gilt [mm] $\lim_{x \to x_0}\frac{f(x)}{g(x)}=0$. [/mm]
Nach Definition des Begriffes Grenzwert (der hier $=0$ ist) gilt dann:
Insbesondere zu $M:=1$ gibt es dann ein [mm] $\delta [/mm] > 0$, so dass für alle $x$ mit [mm] $|x-x_0| [/mm] < [mm] \delta$ [/mm] (oder meintwegen auch [mm] $\le \delta$) [/mm] folgt:
[mm] $\vmat{\frac{f(x)}{g(x)}-0} \le [/mm] 1=M$
[mm] $\gdw$ [/mm]
[mm] $\vmat{\frac{f(x)}{g(x)}} \le [/mm] 1=M$

Also:
[mm] $\vmat{\frac{f(x)}{g(x)}} \le [/mm] M=1$ gilt für alle $x$ in der [mm] $\delta$-Umgebung [/mm] von [mm] $x_0$. [/mm]
(Mit anderen Worten: $x [mm] \mapsto \frac{f(x)}{g(x)}$ [/mm] ist in der [mm] $\delta$-Umgebung [/mm] von [mm] $x_0$ [/mm] beschränkt.)
Das heißt aber gerade $f(x)=O(g(x))$ bei $x [mm] \to x_0$. [/mm]

Vielleicht musst Du ein wenig genauer hingucken und die Formulierung verfeinern (sowas wie ggf. verkleinere man [mm] $\delta$), [/mm] aber im Wesentlichen geht das so und bei den anderen Aufgaben analog.

Also:
Bei den Aufgaben:
- Was ist vorausgesetzt? (Bei a) i) war halt nichts anderes vorausgesetzt, als dass [mm] $\lim_{x \to x_0}\frac{f(x)}{g(x)}=0$ [/mm] sei.)
- Was ist zu zeigen? (Bei a) i) war halt zu zeigen, dass dann ein
$M > 0$ so existiert, dass [mm] $\vmat{\frac{f(x)}{g(x)}} \le [/mm] M$ für alle $x$ aus einer Umgebung von [mm] $x_0$ [/mm] gilt. Dazu sollte man halt die Voraussetzung benutzen und den Begriff "Grenzwert" verinnerlicht haben.)

Und vielleicht auch mal b) i):
$f$ stetig in [mm] $x_0$ $\gdw$ [/mm] $f(x) [mm] \to f(x_0)$ [/mm] bei $x [mm] \to x_0$ [/mm]
[mm] $\gdw$ $\frac{f(x)-f(x_0)}{1} \to [/mm] 0$ bei $x [mm] \to x_0$ [/mm]
Mit [mm] $h(x):\equiv [/mm] 1$, [mm] $f^{\sim}(x):=f(x)-f(x_0)$ [/mm] steht also:
[mm] $\gdw$ $\frac{f(x)-f(x_0)}{h(x)} \to [/mm] 0$ bei $x [mm] \to x_0$ [/mm]

M.a.W.:
[mm] $\gdw$ $f^\sim(x)=o(h(x))=o(1)$ [/mm] bei $x [mm] \to x_0$ [/mm] mit [mm] $f^\sim$ [/mm] und $h$ von oben, bzw.
[mm] $\gdw$ $(f(x)-f(x_0))=o(1)$ [/mm] bei $x [mm] \to x_0$ [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]