matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikLandausymbol
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Numerik" - Landausymbol
Landausymbol < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Landausymbol: Korrekte Notation
Status: (Frage) beantwortet Status 
Datum: 13:03 So 15.10.2017
Autor: vwxyz

Aufgabe
Beweisen Sie die folgenden Aussagen:
a) [mm] x^{5}+x^{3}+x=\mathcal{O}(|x|), [/mm] für x [mm] \to [/mm] 0
b) [mm] x^{5}+x^{3}+x=\mathcal{O}(|x|^{5}), [/mm] für x [mm] \to \infty [/mm]

Sei x > 0. Untersuchen Sie, für welche Exponenten [mm] \alpha, \beta \in \IR [/mm] gilt:
c) [mm] x^{\alpha}= \mathcal{O}(x^{\beta}) [/mm] für x [mm] \to [/mm] 1 ; [mm] x^{\alpha}= o(x^{\beta}) [/mm] für x [mm] \to [/mm] 1
d) [mm] x^{\alpha}= \mathcal{O}(x^{\beta}) [/mm] für x [mm] \to \infty [/mm] ; [mm] x^{\alpha}= o(x^{\beta}) [/mm] für x [mm] \to \infty [/mm]

Also ich habe mit dem Verständnis der Aufgabe nicht so ein Problem. Aufgabe a) kann ich relativ schnell mit Hilfe von L'Hospital beweisen und b) durch ausklammern.

Also bei der a) habe ich dann:
[mm] \limes_{x\rightarrow 0} \bruch{x^{5}+x^{3}+x}{|x|} \Rightarrow \limes_{x\rightarrow 0} \bruch{5x^{4}+3x^{2}+1}{|1|}=\bruch{1}{|1|} [/mm] und da das Landau-Symbol ja als lim sup definiert ist es nur die 1 und somit kleiner [mm] \infty. [/mm]

Bei der b habe ich:
[mm] \limes_{x\rightarrow 0} \bruch{x^{5}+x^{3}+x}{|x|^5}=\limes_{x\rightarrow 0} \bruch{x^{5}(1+\bruch{1}{x^{2}}+\bruch{1}{x^{4}})}{|x|^5} [/mm]

Die Klammer strebt gegen 1 und oben und unten kürzen sich die [mm] x^{5} [/mm] zu |1|.

Meine Frage hierzu, kann ich dies einfach so anwenden mit der Begründung, dass ich nur das Supremum suche und so, nicht separat der positive und negative Betrag betrachtet werden muss. Denn eigentlich darf ich doch L'Hospital nicht anwenden, weil die Betragfunktion an der Stelle nicht differenzierbar ist.


Zu den Aufgaben c) und d) habe ich auch nicht so große Probleme mit dem herausfinden der Exponenten aber sehr wohl mit dem Verständnis und der Notation.
Die d) ist für mich persönlich einfacher:

[mm] x^{\alpha}= \mathcal{O}(x^{\beta}) [/mm] für x [mm] \to \infty [/mm] bedeutet ja:

[mm] \limes_{x\rightarrow \infty} |\bruch{x^{\alpha}}{x^{\beta}}|<\infty [/mm] und das gilt nur für [mm] \alpha \le \beta, [/mm] weil [mm] |x^{\alpha-\beta}|<\infty [/mm] sein muss und hierfür der Exponent 0 oder negativ sein muss.

Analog dazu: [mm] x^{\alpha}= o(x^{\beta}) [/mm] für x [mm] \to \infty [/mm] bedeutet:

[mm] \limes_{x\rightarrow \infty} |\bruch{x^{\alpha}}{x^{\beta}}|=0 [/mm] und das gilt nur für [mm] \alpha [/mm] < [mm] \beta, [/mm] weil [mm] x^{\alpha-\beta}=0 [/mm] sein muss und hier der Exponent dann negativ werden muss.

Bei der c) erscheint mir das schon etwas schwieriger.

[mm] x^{\alpha}= \mathcal{O}(x^{\beta}) [/mm] für x [mm] \to [/mm] 1 bedeutet ja dann: [mm] \limes_{x\rightarrow 1} |\bruch{x^{\alpha}}{x^{\beta}}|<\infty. [/mm] Es muss also gelten [mm] \limes_{x\rightarrow 1} |x^{\alpha-\beta}|<\infty. [/mm]
Wenn x nun gegen 1 strebt kann ich dass doch gleich [mm] 1^{\alpha-\beta} [/mm] setzen und dann gilt das doch für alle Kombinationen von [mm] \alpha [/mm] und [mm] \beta [/mm]

Analog bedeutet [mm] x^{\alpha}= o(x^{\beta}) [/mm] für x [mm] \to [/mm] 1 also:
[mm] \limes_{x\rightarrow 1} \bruch{x^{\alpha}}{x^{\beta}}=0 [/mm] und das gilt nur für alle [mm] \alpha [/mm] und [mm] \beta [/mm] für die [mm] |1^{\alpha-\beta}|=0 [/mm] gilt. Und demzufolge gibt es keine Exponenten.

Zur c) wäre meine Frage also, ist das soweit richtig? Oder muss ich hier auch wegen dem lim sup die Werte vor 1 betrachten zumindest beim ersten Teil der Aufgabe.
Und die zweite Frage wäre auch wie notiere ich das mathematisch korrekt in einen Beweis. Für mich ist das finden dieser Lösungen recht trivial, da ich mich ja nur fragen muss wann es konvergiert und wann es divergiert. Aber wie schreibe ich das nun konkret auf? Muss ich da die [mm] \varepsilon [/mm] Schreibweise benutzen? Oder reicht das schon so?

Vielen Dank schon mal



        
Bezug
Landausymbol: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Di 17.10.2017
Autor: leduart

Hallo
um Beweise zu formulieren ist denke ich die Def von O und o mit einer Konstanten einfacher
f [mm] \in \mathcal{O}(g) \exists\ [/mm] C > 0\ [mm] \exists\ \varepsilon [/mm] > 0 \ [mm] \forall\ [/mm] x [mm] \in \lbrace [/mm] x: d(x, [mm] a)<\varepsilon\rbrace: [/mm] |f(x)| [mm] \le C\cdot|g(x)| [/mm]
für x gegen a. und die entsprechende Def für [mm] \mathcal{o}(g) [/mm] bei der du [mm] \exists\ [/mm] C  durch alle C ersetzt.
Gruß leduartt

Bezug
                
Bezug
Landausymbol: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 06:26 Mi 18.10.2017
Autor: vwxyz

HI,
mit der Definition habe ich es auch bereits versucht und gebe dir Recht viel es mir einfacher. Das Dumme ist nur, dass wir diese Schreibweise in Ihrem Skript bisher noch nicht hatten. Folgt diese Definition relativ trivial aus Ihrer oder muss ich da noch irgendwas nachweisen, dass beide äquivalent zueinander sind.

Andernfalls ist halt immer noch die Frage ob die Aufgabe so ausreichend bewiesen ist.

Bezug
                        
Bezug
Landausymbol: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 Fr 20.10.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]