matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisLagrangeschen Restglied
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Lagrangeschen Restglied
Lagrangeschen Restglied < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrangeschen Restglied: Komplexes Polynom
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:44 Mi 04.05.2011
Autor: adam18

Aufgabe
[mm] F(t)=\summe_{v=-n}^{n}a_{v}e^{ivt} [/mm]

Zeige ferner mit Hilfe der Lagrangeschen Restgliedformel (angewandt auf cos t, sin t), dass es ein komplexes Polynom P(t) = [mm] \summe_{i=0}^{m}b_{i}i^{i} [/mm] gibt, mit [mm] b_{i}\in \IC, [/mm] so dass für alle t [mm] \in [/mm] [0; [mm] 2\pi] [/mm] gilt: [mm] |F(t)-P(t)|\le \varepsilon/2 [/mm]

Hallo Leute,
ich brauche dringend eure tipps,

so ist [mm] F(t)=\summe_{v=-n}^{n}(cos(vt) [/mm] - [mm] i\*sin(vt)) [/mm]
und
Rn(x)= |F(t) - P(t)| ist das richtig?
hat jemand eine Idee?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Lagrangeschen Restglied: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Mi 04.05.2011
Autor: leduart

Hallo
in p(t) hast du dich wohl vertippt.
was spricht dagegen einfach das zu tun, was da steht? reine für cos und sin mit restglied einsetzen?
gruss leduart


Bezug
                
Bezug
Lagrangeschen Restglied: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:27 Mi 04.05.2011
Autor: adam18

Ja ich habe mich vertippt
[mm] P(t)=\summe_{v=-n}^{n}(cos(vt) [/mm] + [mm] i\*sin(vt)) [/mm]

die Frage:
wie kann ich mit Hilfe der Lagrangeschen Restglied zeigen, dass [mm] |F(t)-P(t)|\le \varepsilon/2 [/mm]



Bezug
                        
Bezug
Lagrangeschen Restglied: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Mi 04.05.2011
Autor: leduart

Hallo
du hast doch genaue tips, was du machen sollst, reihen hinschreiben, Restglied abschätzen!
Gruss leduart


Bezug
                                
Bezug
Lagrangeschen Restglied: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:43 Mi 04.05.2011
Autor: adam18

hallo leduart,

du meint R(t)=|F(t)-P(t)|  
    
             = [mm] |\summe_{v=-n}^{n}e^{ivt} [/mm] - [mm] \summe_{i=0}^{m}b_{i}t^{i}| [/mm]

aber was ist der zusammenhang zwischen die Summen und R(t), und was bedeutet das Restglied auf cos und sin zu anwenden?


Bezug
                                        
Bezug
Lagrangeschen Restglied: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 Fr 06.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]