Lagrange:Zylinder in Zylinder < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Stellen Sie für einen homogenen Zylinder der Masse m mit Radius r und Länge l, der im Schwerefeld in einem waagerecht liegenden Hohlzylinder mit Radius R > r rollt (ohne Schlupf), die Lagrangefunktion auf. Diskutieren Sie die Bewegung in der Nähe der Gleichgewichtslage. |
Wenn ich mir das Ganze vorstelle, dann sieht es so aus, dass der Hohlzylinder einfach irgendwo liegt und der einbeschriebene Zylinder sich auch nicht bewegt, außer man hat ihn vorher "ausgelenkt", ihm also potentielle Energie bezüglich des Auflagepunkts des Hohlzylinders zugeführt.
Die potentielle Energie des einbeschriebenen wäre mE gegeben durch V=M*g*h, wobei h=(R-r)+s, wobei s die Schwerpunktskoordinate ist, die sich ja bezüglich das körpereigenen Koordinatensystems des Hohlzylinders bei einer Bewegung ändert.
Für die kinetische Energie müsste ja gelten, dass E_kin=T_translation+T_rotation ist., also [mm] T=1/2*m*v^2+1/2*I_(xx)*Omega_x^2, [/mm] wobei I_(xx) der Trägheitsmoment bezüglich der Rotationsachse ist und [mm] Omega_x [/mm] die Winkelgeschwindigkeit bezüglich der Rotationsachse.
Sind diese Grundüberlegungen korrekt?
Ich würde nun so weiter verfahren, dass ich I_(xx) nur für den homogenen Zylinder ausrechne, aber mir ist ein Rätsel, wie das Zusammenspiel aussieht. Ich wäre wirklich dankbar dafür, wenn mir jemand einen mathematisch formulierten Ansatz präsentieren könnte.
Gruß
Vicarious
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:46 So 05.07.2009 | Autor: | Vicarious |
Werde diese Frage jetzt auch auf dem Matheplaneten stellen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:21 So 05.07.2009 | Autor: | leduart |
Hallo
Dein Ansatz ist richtig, nur solltest du jetzt deine lageenergie von der Stelle [mm] \phi [/mm] also dem Auslenkwinkel aufschreiben.
ich denke, der Winkel [mm] \phi [/mm] in dem festen Zylinder ist der geeignet parameter, entsprechend dann auch [mm] \phi'
[/mm]
Wo liegen sonst genau deine Schwierigkeiten?
Es geht wahrscheinlich auch mit h, sieht mir aber komplizierter aus.
Gruss leduart
|
|
|
|
|
Ja, die potentielle Energie in Abhängigkeit vom Winkel darzustellen scheint mir auch einfacher zu gehen. Meine Schwierigkeiten liegen aber gerade dabei, die potentielle Energie nun durch Phi auszudrücken. Ich weiß auch nicht, wie ich in diesem Koordinatensystem zB v ausdrücken kann. Und die Winkelgeschwindigkeit wäre auch hier dphi/dt, oder?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:00 So 05.07.2009 | Autor: | leduart |
Hallo
mitte des inneren Zylinders kreist auf dem Kreis mit Radius R-r. leg den Ursprung in die Mitte des Zyl. dann ist nach der ueblichen Rechnung dort [mm] \phi= -\pi/2
[/mm]
die hoehe von s aus dem Winkel auszurechnen, kannst du an ner Skizze ablesen. aus ds/dt [mm] d\phi/dt [/mm] auszurechnen sollte auch nicht so schwierig sein!
Also fang mal an.
Gruss leduart
|
|
|
|