matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenLagrange + Gleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Lagrange + Gleichungssystem
Lagrange + Gleichungssystem < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange + Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 Fr 02.07.2010
Autor: Stoeckchen2

Hallo,

ich versuche mich an der Lösung einer Aufgabe zu Lagrange. Die Aufgabe habe ich aus dem Buch "Repetitorium der höheren Mathematik". In diesem Buch gibt es zu dieser Aufgabe auch eine Lösung, die ich allerdings nicht ganz nachvollziehen kann.

Gegeben ist die Funktion f(x, y, z) = xy + 2xz + 2yz, die unter der Nebenbedingung h(x, y, z) = xyz - 32 minimiert werden soll.

Zack zack. Aufstellen der Hilfsfunktion:

L(x, y, z, [mm] \lambda) [/mm] = f(x, y, z) + [mm] \lambda [/mm] h(x, y, z) = xy + 2xz + 2yz + [mm] \lambda [/mm] xyz - 32 [mm] \lamdba [/mm]

Jetzt muss ich nach x, y, z und [mm] \lambda [/mm] partiell ableiten.

[mm] \frac{\partial L}{\partial x} [/mm] = y+2z+ [mm] \lambda [/mm] yz (1)
[mm] \frac{\partial L}{\partial y} [/mm] = x+2z+ [mm] \lambda [/mm] xz (2)
[mm] \frac{\partial L}{\partial z} [/mm] = 2x+2y+ [mm] \lambda [/mm] xy (3)
[mm] \frac{\partial L}{\partial \lambda} [/mm] = xyz - 32 (4)

Jetzt muss ich das folgende Gleichungssystem lösen:

(1) = 0
(2) = 0
(3) = 0
(4) = 0

Im Buch wird nicht gezeigt, wie dies geschickt gelöst wird. Es wird einfach nur die Lösung angegeben. Ich habe dieses Gleichungssystem auch selbst gelöst - es war allerdings eine riesige Rechnerei - 1.5 Seiten. Übersehe ich da einen Trick? Es muss ja recht simpel sein sonst würde es ja im Buch gezeigt werden…

Habt ihr eine Idee?

Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lagrange + Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Fr 02.07.2010
Autor: schachuzipus

Hallo Chris,

> Hallo,
>  
> ich versuche mich an der Lösung einer Aufgabe zu Lagrange.
> Die Aufgabe habe ich aus dem Buch "Repetitorium der
> höheren Mathematik". In diesem Buch gibt es zu dieser
> Aufgabe auch eine Lösung, die ich allerdings nicht ganz
> nachvollziehen kann.
>  
> Gegeben ist die Funktion f(x, y, z) = xy + 2xz + 2yz, die
> unter der Nebenbedingung h(x, y, z) = xyz - 32 minimiert
> werden soll.
>  
> Zack zack. Aufstellen der Hilfsfunktion:
>  
> $L(x, y, [mm] z,\lambda)=f(x, [/mm] y, z) + [mm] \lambda [/mm] h(x, y, z) = xy  + 2xz + 2yz + [mm] \lambda [/mm] xyz - [mm] 32\lambda$ [/mm]

>  
> Jetzt muss ich nach x, y, z und [mm]\lambda[/mm] partiell ableiten.
>  
> [mm]\frac{\partial L}{\partial x}[/mm] = y+2z+ [mm]\lambda[/mm] yz (1)
>  [mm]\frac{\partial L}{\partial y}[/mm] = x+2z+ [mm]\lambda[/mm] xz (2)
>  [mm]\frac{\partial L}{\partial z}[/mm] = 2x+2y+ [mm]\lambda[/mm] xy (3)
>  [mm]\frac{\partial L}{\partial \lambda}[/mm] = xyz - 32 (4)
>  
> Jetzt muss ich das folgende Gleichungssystem lösen:
>  
> (1) = 0
>  (2) = 0
>  (3) = 0
>  (4) = 0
>  
> Im Buch wird nicht gezeigt, wie dies geschickt gelöst
> wird. Es wird einfach nur die Lösung angegeben. Ich habe
> dieses Gleichungssystem auch selbst gelöst - es war
> allerdings eine riesige Rechnerei - 1.5 Seiten. Übersehe
> ich da einen Trick? Es muss ja recht simpel sein sonst
> würde es ja im Buch gezeigt werden…
>  
> Habt ihr eine Idee?

Nun, ich habe es nicht komplett durchgerechnet, aber wenn du mal damit beginnst, das -1fache der 1.Gleichung auf die 2.Gleichung zu addieren und geschickt ausklammerst in der neuen 2.Gleichung, so bekommst du:

[mm] $(x-y)(\lambda [/mm] z+1)=0$, also $x=y$ oder [mm] $\lambda [/mm] z=-1$

Nun unterscheide: 1) $x=y$, das lässt sich doch schnell runterrechnen ...

und 2) [mm] $\lambda [/mm] z=-1$ ...

>  
> Danke
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]