Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft
Für
Schüler
,
Studenten
, Lehrer, Mathematik-Interessierte.
Hallo Gast!
[
einloggen
|
registrieren
]
Startseite
·
Forum
·
Wissen
·
Kurse
·
Mitglieder
·
Team
·
Impressum
Forenbaum
Forenbaum
Hochschulmathe
Uni-Analysis
Reelle Analysis
UKomplx
Uni-Kompl. Analysis
Differentialgl.
Maß/Integrat-Theorie
Funktionalanalysis
Transformationen
UAnaSon
Uni-Lin. Algebra
Abbildungen
ULinAGS
Matrizen
Determinanten
Eigenwerte
Skalarprodukte
Moduln/Vektorraum
Sonstiges
Algebra+Zahlentheo.
Algebra
Zahlentheorie
Diskrete Mathematik
Diskrete Optimierung
Graphentheorie
Operations Research
Relationen
Fachdidaktik
Finanz+Versicherung
Uni-Finanzmathematik
Uni-Versicherungsmat
Logik+Mengenlehre
Logik
Mengenlehre
Numerik
Lin. Gleich.-systeme
Nichtlineare Gleich.
Interpol.+Approx.
Integr.+Differenz.
Eigenwertprobleme
DGL
Uni-Stochastik
Kombinatorik
math. Statistik
Statistik (Anwend.)
stoch. Analysis
stoch. Prozesse
Wahrscheinlichkeitstheorie
Topologie+Geometrie
Uni-Sonstiges
Gezeigt werden alle Foren bis zur Tiefe
2
Navigation
Startseite
...
Neuerdings
beta
neu
Forum
...
vor
wissen
...
vor
kurse
...
Werkzeuge
...
Nachhilfevermittlung
beta
...
Online-Spiele
beta
Suchen
Verein
...
Impressum
Das Projekt
Server
und Internetanbindung werden durch
Spenden
finanziert.
Organisiert wird das Projekt von unserem
Koordinatorenteam
.
Hunderte Mitglieder
helfen ehrenamtlich in unseren
moderierten
Foren
.
Anbieter der Seite ist der gemeinnützige Verein "
Vorhilfe.de e.V.
".
Partnerseiten
Weitere Fächer:
Vorhilfe.de
FunkyPlot
: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Startseite
>
MatheForen
>
Differenzialrechnung
>
Lagrange
Foren für weitere Studienfächer findest Du auf
www.vorhilfe.de
z.B.
Astronomie
•
Medizin
•
Elektrotechnik
•
Maschinenbau
•
Bauingenieurwesen
•
Jura
•
Psychologie
•
Geowissenschaften
Forum "Differenzialrechnung" - Lagrange
Lagrange
<
Differenzialrechnung
<
Analysis
<
Oberstufe
<
Schule
<
Mathe
<
Vorhilfe
Ansicht:
[ geschachtelt ]
|
Forum "Differenzialrechnung"
|
Alle Foren
|
Forenbaum
|
Materialien
Lagrange: Stationäre Punkte
Status
:
(Frage) beantwortet
Datum
:
19:48
Do
26.03.2009
Autor
:
fiwitt
Aufgabe
Lagrange folgender Funktion mit NB
U(x,y)=ln(x-4) + ln (y-3) NB x+y=9
Bestimmung der stationären Punkte
Ich komme auf ( 5/4) und Lambda 1
Die ersten partiellen Ableitungen waren bei mir
1/x-4 - Lambda und 1/y-3 - Lambda
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Bezug
Lagrange: Antwort
Status
:
(Antwort) fertig
Datum
:
19:53
Do
26.03.2009
Autor
:
angela.h.b.
Hallo,
.
Ich erhalte auch dein Ergebnis.
Gruß v. Angela
Bezug
Bezug
Lagrange: Mitteilung
Status
:
(Mitteilung) Reaktion unnötig
Datum
:
20:20
Do
26.03.2009
Autor
:
fiwitt
Vielen Dank
Bezug
Ansicht:
[ geschachtelt ]
|
Forum "Differenzialrechnung"
|
Alle Foren
|
Forenbaum
|
Materialien
www.unimatheforum.de
[
Startseite
|
Forum
|
Wissen
|
Kurse
|
Mitglieder
|
Team
|
Impressum
]