matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenLagrange-Multiplikator- Verfah
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Lagrange-Multiplikator- Verfah
Lagrange-Multiplikator- Verfah < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange-Multiplikator- Verfah: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:49 Fr 18.05.2012
Autor: Yuber21

Aufgabe
Bestimmen Sie mittels Lagrange-Multiplikator- Verfahren die
Punkte in der Fliiche in [mm] \IR^3, [/mm]
[mm] 5x^2/8+ 5y^2/8+3xy/4 [/mm] = 1, z E [mm] \IR [/mm]
mit dem kleinsten Abstand zum Ursprung.

Hi,
mein Ansatz ist, dass ich dich Nebenbedingung erstmals aufstelle: [mm] 5x^2/8+ 5y^2/8+3xy/4-1=0. [/mm] Hier versuche ich den Nenner erstmal wegzubekommen, indem ich die Funktion mit 8 multipliziere. Danach habe ich: [mm] 5x^2+5y^2-6xy-8=0 [/mm] als NB. Meine Hauptbedingung ist [mm] d=x^2+y^2+z^2, [/mm] also der Abstand. Die Wurzel darf man meines Wissens weglassen, so wie ich es gemacht habe zur Vereinfachung.
Somit gilt als Lagrangeformel:
[mm] F=x^2+y^2+z^2+\lambda(5x^2/8+ 5y^2/8+3xy/4-1). [/mm]
So nun erstelle ich die partielle Ableitung 1. Ordnung nach x und y.
I. [mm] Fx=2x+10\lambda x-6y\lambda [/mm]
II. [mm] Fy=2y+10y\lambda -6x\lambda [/mm]

Ich sehe ja, dass in Fall I x=y=0 sein muss, damit die Gleichung erfüllt werden kann, aber für welchen Wert kann die Gleichung erfüllt werden, falls ich für [mm] \lambda [/mm] einen bestimmten Wert einsetze? Normalerweise habe ich diese Aufgabentypen nur mit 1 Variablen gerechnet und dort war es leicht ersichtlich, welchen Wert [mm] \lambda [/mm] annehmen muss, damit sich beispielsweise die X-Werte so wegkürzen, dass die Gleichung =0 ist, aber hier sehe ich es leider nicht.
Vielen Dank im Voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lagrange-Multiplikator- Verfah: Antwort
Status: (Antwort) fertig Status 
Datum: 14:34 Fr 18.05.2012
Autor: angela.h.b.


> Bestimmen Sie mittels Lagrange-Multiplikator- Verfahren
> die
>  Punkte in der Fliiche in [mm]\IR^3,[/mm]
>  [mm]5x^2/8+ 5y^2/8+3xy/4[/mm] = 1, z E [mm]\IR[/mm]
>  mit dem kleinsten Abstand zum Ursprung.
>  Hi,
>  mein Ansatz ist, dass ich dich Nebenbedingung erstmals
> aufstelle: [mm]5x^2/8+ 5y^2/8+3xy/4-1=0.[/mm] Hier versuche ich den
> Nenner erstmal wegzubekommen, indem ich die Funktion mit 8
> multipliziere. Danach habe ich: [mm]5x^2+5y^2-6xy-8=0[/mm] als NB.
> Meine Hauptbedingung ist [mm]d=x^2+y^2+z^2,[/mm] also der Abstand.
> Die Wurzel darf man meines Wissens weglassen, so wie ich es
> gemacht habe zur Vereinfachung.
>  Somit gilt als Lagrangeformel:
>  [mm]F=x^2+y^2+z^2+\lambda(5x^2/8+ 5y^2/8+3xy/4-1).[/mm]
>  So nun
> erstelle ich die partielle Ableitung 1. Ordnung nach x und
> y.
>  I. [mm]Fx=2x+10\lambda x-6y\lambda[/mm]
>  II. [mm]Fy=2y+10y\lambda -6x\lambda[/mm]

III. [mm] 5x^2/8+ 5y^2/8+3xy/4-1=0 [/mm]

>  
> Ich sehe ja, dass in Fall I x=y=0 sein muss,

Hallo,

richtig ist, daß für x=y=0
[mm] 0=2x+10\lambda x-6y\lambda [/mm] und
[mm] 0=$Fy=2y+10y\lambda -6x\lambda$, [/mm]
aber die dritte Gleichung löst x=y=0 nicht.

Du könntest so vorgehen:
I. nach  [mm] \lambda [/mm] auflösen  (beim Dividieren einschränkende Bedingung notieren)

Das [mm] \lambda [/mm] dann in II. einsetzen und eine Beziehung zwischen x und y erobern.
Damit dann in III. gehen.

LG Angela







damit die

> Gleichung erfüllt werden kann, aber für welchen Wert kann
> die Gleichung erfüllt werden, falls ich für [mm]\lambda[/mm] einen
> bestimmten Wert einsetze? Normalerweise habe ich diese
> Aufgabentypen nur mit 1 Variablen gerechnet und dort war es
> leicht ersichtlich, welchen Wert [mm]\lambda[/mm] annehmen muss,
> damit sich beispielsweise die X-Werte so wegkürzen, dass
> die Gleichung =0 ist, aber hier sehe ich es leider nicht.
>  Vielen Dank im Voraus.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Lagrange-Multiplikator- Verfah: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Fr 18.05.2012
Autor: Yuber21

Ok, vielen Dank für die Antwort.
Es stimmt, leider habe ich die 3. Gleichung als Nebenbedingung vergessen.
Nun habe ich die I. Gleichung umgeformt und für [mm] \lambda [/mm] =-1/5 + 1x/3y rausbekommen.
Für y habe ich, wenn ich das in die 2. Gleichung einsetze: [mm] y=-5x+5+x^2/y [/mm] raus, aber wenn ich dies in die 3. Gleichung einsetze, kommt bei mir nichts gescheites raus.
Meinen Fehler sehe ich leider noch nicht, aber wenn ich den x/y Wert habe weiß ich auch nicht, wie das weitere Vorgehen ist.
Mein Ziel ist es ja, für die ersten beiden Gleichungen die x,y und [mm] \lambda [/mm] Werte zu finden, für die die Gleichungen =0 sind. Danach gucke ich mir beide Gleichungen genauer an, setze [mm] \lambda [/mm] in die Gleichung ein und muss anschließend die Bedingung festlegen, für die die anderen Gleichungen ebenfalls 0 sind. Zuletzt gucke ich dann in der Nebenbedingung, welchen x/y-Wert ich erhalte und überprüfe, welcher minimal ist, oder?

Bezug
                        
Bezug
Lagrange-Multiplikator- Verfah: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Fr 18.05.2012
Autor: MathePower

Hallo Yuber21,

> Ok, vielen Dank für die Antwort.
> Es stimmt, leider habe ich die 3. Gleichung als
> Nebenbedingung vergessen.
>  Nun habe ich die I. Gleichung umgeformt und für [mm]\lambda[/mm]
> =-1/5 + 1x/3y rausbekommen.
> Für y habe ich, wenn ich das in die 2. Gleichung einsetze:
> [mm]y=-5x+5+x^2/y[/mm] raus, aber wenn ich dies in die 3. Gleichung
> einsetze, kommt bei mir nichts gescheites raus.
>  Meinen Fehler sehe ich leider noch nicht, aber wenn ich
> den x/y Wert habe weiß ich auch nicht, wie das weitere
> Vorgehen ist.


Da Du von

[mm]F=x^2+y^2+z^2+\lambda(5x^2/8+ 5y^2/8+3xy/4-1)[/mm]

ausgehst, stimmen die Gleichungen I und II nicht:

I. [mm]F_{x}=2x+\red{\bruch{10}{8}\lambda x\blue{+}\red{\bruch{6}{8}} y\lambda[/mm]
II. [mm]F_{y}=2y+\red{\bruch{10}{8}\lambda y\blue{+}\red{\bruch{6}{8}} x\lambda[/mm]

Korrekterweise muss hier auch noch stehen:

IV. [mm]F_{z}= \ ...[/mm]


>  Mein Ziel ist es ja, für die ersten beiden Gleichungen
> die x,y und [mm]\lambda[/mm] Werte zu finden, für die die
> Gleichungen =0 sind. Danach gucke ich mir beide Gleichungen
> genauer an, setze [mm]\lambda[/mm] in die Gleichung ein und muss
> anschließend die Bedingung festlegen, für die die anderen
> Gleichungen ebenfalls 0 sind. Zuletzt gucke ich dann in der
> Nebenbedingung, welchen x/y-Wert ich erhalte und
> überprüfe, welcher minimal ist, oder?


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]