matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungLagebeziehung Gerade Gerade
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Lagebeziehung Gerade Gerade
Lagebeziehung Gerade Gerade < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagebeziehung Gerade Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Do 09.05.2013
Autor: lucy.mg

Aufgabe
Bestimmen Sie die Lage der beiden Geraden und den Abstand bzw. den Schnittpunkt:

[mm] g_{1} [/mm] : [mm] \overrightarrow{a} [/mm] = [mm] \vektor{1 \\ 2} [/mm] , [mm] P_{1} [/mm] = (-1/-1)
[mm] g_{2} [/mm] : [mm] \overrightarrow{b} [/mm] = [mm] \vektor{1 \\ -2} [/mm] , [mm] P_{2} [/mm] = (1/2)

Hey Leute

habe ich so die Geraden richtig aufgestellt?

[mm] g_{1} [/mm] : [mm] \overrightarrow{a} [/mm] = [mm] \vektor{1 \\ 2} [/mm] - [mm] (\vektor{-1 \\ -1} [/mm] - [mm] \vektor{1 \\ 2}) [/mm]

Bleiben wir lieber mal vorerst bei der ersten Geradenaufstellung

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lagebeziehung Gerade Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Do 09.05.2013
Autor: MathePower

Hallo lucy.mg,

> Bestimmen Sie die Lage der beiden Geraden und den Abstand
> bzw. den Schnittpunkt:
>  
> [mm]g_{1}[/mm] : [mm]\overrightarrow{a}[/mm] = [mm]\vektor{1 \\ 2}[/mm] , [mm]P_{1}[/mm] =
> (-1/-1)
>  [mm]g_{2}[/mm] : [mm]\overrightarrow{b}[/mm] = [mm]\vektor{1 \\ -2}[/mm] , [mm]P_{2}[/mm] =
> (1/2)
>  Hey Leute
>  
> habe ich so die Geraden richtig aufgestellt?
>  
> [mm]g_{1}[/mm] : [mm]\overrightarrow{a}[/mm] = [mm]\vektor{1 \\ 2}[/mm] - [mm](\vektor{-1 \\ -1}[/mm]
> - [mm]\vektor{1 \\ 2})[/mm]
>


Das muss doch so lauten:

[mm]g_{1} : \overrightarrow{a} =\vektor{1 \\ 2} - \blue{t}(\vektor{-1 \\ -1}- \vektor{1 \\ 2})[/mm]


> Bleiben wir lieber mal vorerst bei der ersten
> Geradenaufstellung
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Lagebeziehung Gerade Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 Do 09.05.2013
Autor: abakus


> Hallo lucy.mg,

>

> > Bestimmen Sie die Lage der beiden Geraden und den Abstand
> > bzw. den Schnittpunkt:
> >
> > [mm]g_{1}[/mm] : [mm]\overrightarrow{a}[/mm] = [mm]\vektor{1 \\ 2}[/mm] , [mm]P_{1}[/mm] =
> > (-1/-1)
> > [mm]g_{2}[/mm] : [mm]\overrightarrow{b}[/mm] = [mm]\vektor{1 \\ -2}[/mm] , [mm]P_{2}[/mm] =
> > (1/2)
> > Hey Leute
> >
> > habe ich so die Geraden richtig aufgestellt?
> >
> > [mm]g_{1}[/mm] : [mm]\overrightarrow{a}[/mm] = [mm]\vektor{1 \\ 2}[/mm] - [mm](\vektor{-1 \\ -1}[/mm]
> > - [mm]\vektor{1 \\ 2})[/mm]
> >

>
>

> Das muss doch so lauten:

>

> [mm]g_{1} : \overrightarrow{a} =\vektor{1 \\ 2} - \blue{t}(\vektor{-1 \\ -1}- \vektor{1 \\ 2})[/mm]

Hallo Lucy.mg,
der Stützvektor für [mm] $g_1$ [/mm] ist der Ortsvektor von [mm]P_1[/mm]. Es gilt[mm]g_{1} : \overrightarrow{x} =\vektor{-1 \\ -1} +t \vektor{1 \\ 2}[/mm] .
Aber warum stellst du die Geradengleichungen jetzt schon auf? Vergleiche doch erst einmal deine Richtungsvektoren [mm]\vec{a}[/mm] und [mm]\vec{b}[/mm].
Gruß Abakus

>
>

> > Bleiben wir lieber mal vorerst bei der ersten
> > Geradenaufstellung
> >
> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.

>
>

> Gruss
> MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]