matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenLagebeziehung 2er Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Lagebeziehung 2er Geraden
Lagebeziehung 2er Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagebeziehung 2er Geraden: g,die zu gegeb. g senkr. ist
Status: (Frage) beantwortet Status 
Datum: 16:52 Mi 30.01.2008
Autor: gmZET

Aufgabe
g: [mm] \overrightarrow{x} [/mm] = [mm] \vektor{2 \\ 3 \\ -1} [/mm] + s * [mm] \vektor{1 \\ 0 \\ -3} [/mm]

Geben Sie eine Gleichung einer Geraden an, die die Gerade g senkrecht schneidet.

Der Stützvektor kann ja gleich bleiben, dann ist der Schnittpunkt eben in diesem Punkt. Ich habs nun über das Skalarprodukt versucht, indem ich das Produkt der Richtungsvektoren 0 gesetzt hab, aber das klappt nicht =(

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lagebeziehung 2er Geraden: keine eindeutige Lösung
Status: (Antwort) fertig Status 
Datum: 16:56 Mi 30.01.2008
Autor: Roadrunner

Hallo gmZET,

[willkommenmr] !!


Was hast Du denn bisher gerechnet? Dann darfst Du nicht vergessen, dass es hier nicht eine eindeutige Lösung gibt sondern unendlich viele.

Mit der Bestimmungsgleichung aus dem MBSkalaprodukt kannst Du Dir dann z.B. einen beliebigen Wert für $z_$ wählen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Lagebeziehung 2er Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Mi 30.01.2008
Autor: gmZET

also ich hab errechnet:
x=3z
ist dann der richtungsvektor [mm] \vektor{-9 \\ 0 \\ -3} [/mm] ?


Bezug
                        
Bezug
Lagebeziehung 2er Geraden: richtig!
Status: (Antwort) fertig Status 
Datum: 19:56 Mi 30.01.2008
Autor: Roadrunner

Hallo gmZET!


Dieser Vektor ist richtig [ok] . Allerdings würde ich hier noch ausklammern zu:
[mm] $$\vec{n}^{\star} [/mm] \ = \ [mm] \vektor{3\\0\\1}$$ [/mm]

Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]