matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeLagebeziehung-Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Lagebeziehung-Ebenen
Lagebeziehung-Ebenen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagebeziehung-Ebenen: Parameterform
Status: (Frage) beantwortet Status 
Datum: 23:43 Fr 11.11.2011
Autor: theresetom

Aufgabe
Ich hab zwei ebenen in parameterfom und die lagebeziehung will ich überprüfen und gegebenfalls die Schnittgerade ausrechnen.

Kann ich das auch in Paramterform tuhen oder muss ich in Normalform umrechnen?

[mm] \varepsilon_1 [/mm] = (3,1,4) + s * (1,1,1) + t * (-1,1,2)
[mm] \varepsilon_2 [/mm] = (-1,2,1) + k * (5,-1,-4) + l * (0,2,3)

        
Bezug
Lagebeziehung-Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:57 Fr 11.11.2011
Autor: reverend

Hallo theresetom,

> Ich hab zwei ebenen in parameterfom und die lagebeziehung
> will ich überprüfen und gegebenfalls die Schnittgerade
> ausrechnen.
>  Kann ich das auch in Paramterform tuhen oder muss ich in
> Normalform umrechnen?
>  
> [mm]\varepsilon_1[/mm] = (3,1,4) + s * (1,1,1) + t * (-1,1,2)
>  [mm]\varepsilon_2[/mm] = (-1,2,1) + k * (5,-1,-4) + l * (0,2,3)

Du kannst das zwar auch in Parameterform tun, aber in der Normalform ist es bedeutend einfacher.

Letztlich geht es aber doch nur um die Ermittlung von Normalenvektoren. Für jede Ebene findet man einen über das Kreuzprodukt der beiden Richtungsvektoren. Der Richtungsvektor der Schnittgeraden ist dann wiederum das Kreuzprodukt der beiden Normalenvektoren der Ebenen.
Wenn also [mm] \vec{r} [/mm] der gesuchte Geraden-Richtungsvektor ist, dann heißt das hier:

[mm] \vec{r}=\left(\vektor{1\\1\\1}\times\vektor{-1\\1\\2}\right)\times\left(\vektor{5\\-1\\-4}\times\vektor{0\\2\\3}\right) [/mm]

Dann ggf. noch normieren.

Außerdem brauchst Du für die Gerade natürlich noch einen Aufpunkt, der also in beiden Ebenen liegen muss.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]