matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungLage Gerade Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Lage Gerade Ebene
Lage Gerade Ebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lage Gerade Ebene: Frage
Status: (Frage) beantwortet Status 
Datum: 11:27 Mi 30.03.2005
Autor: Sonnen_scheinly

Hallo...ich hab wieder ein Verständnisproblem....

Aber erstmal die Aufgabe. Die Gerade h  soll in der Ebene [mm] E_a [/mm] liegen und ich soll herausbekommen für welchen Wert a.

h:[mm] \vec x [/mm] = [mm] \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix} +s*\begin{pmatrix} -4 \\ 6 \\ 12 \end{pmatrix} [/mm]

[mm] E_a: [/mm] ax-14y+8z=6a-1

ich habe h in [mm] E_a [/mm] eingesetzt und die Klammern ausmultipliziert, soweit auch ausnahmsweise mal überhaupt kein Problem. ich bin bis zu
s(-4a-12)=a-3  gekommen. Da aber leider nicht weiter, ein Blick in die Lösung verriet mir, dass es für 12-4a=0 und a-3=0 unendlich viele Lösungen gibt, auch klar, also soll laut Lösung a=3 sein, damit h in der Ebene [mm] E_3 [/mm] liegt. Diesen Sprung (?) verstehe ich allerdings nicht, wie kann ich von unendlich viele Lösungen auf a=3 schlussfolgern?

Danke schon mal für eure Erklärung....

        
Bezug
Lage Gerade Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Mi 30.03.2005
Autor: Julius

Hallo Juliane!

> Aber erstmal die Aufgabe. Die Gerade h  soll in der Ebene
> [mm]E_a[/mm] liegen und ich soll herausbekommen für welchen Wert a.
>
> h:[mm] \vec x[/mm] = [mm]\begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix} +s*\begin{pmatrix} -4 \\ 6 \\ 12 \end{pmatrix}[/mm]
>  
> [mm]E_a:[/mm] ax-14y+8z=6a-1
>  
> ich habe h in [mm]E_a[/mm] eingesetzt und die Klammern
> ausmultipliziert, soweit auch ausnahmsweise mal überhaupt
> kein Problem. ich bin bis zu
>  s(-4a-12)=a-3  gekommen.

Du meinst

$s(-4a [mm] \red{+}12) [/mm] = a-3$.

> Da aber leider nicht weiter, ein
> Blick in die Lösung verriet mir, dass es für 12-4a=0 und
> a-3=0 unendlich viele Lösungen gibt, auch klar,

[ok]

> also soll
> laut Lösung a=3 sein, damit h in der Ebene [mm]E_3[/mm] liegt.
> Diesen Sprung (?) verstehe ich allerdings nicht, wie kann
> ich von unendlich viele Lösungen auf a=3 schlussfolgern?

Das ist kein Problem. Lass dich von den "unendlich vielen" Lösungen nicht verwirren.

Was kann alles passieren:

1) Die Gleichung

$s(-4a +12) = a-3$

hat gar keine Lösung (aber das ist hier nicht möglich). In diesem Fall hätten $h$ und $E$ keinen Schnittpunkt, d.h. $h$ würde parallel zu $E$ verlaufen.

2) Die Gleichung

$s(-4a+12) = a-3$

hat genau eine Lösung (das ist für $a [mm] \ne [/mm] 3$ der Fall, denn dann ist [mm] $s=\frac{a-3}{-4a+12}$ [/mm] eindeutig bestimmt). Dann haben $h$ und $E$ einen Schnittpunkt.

3) Die Gleichung

$s(-4a+12) = a-3$

hat unendlich viele Lösungen (das ist für $a=3$ der Fall). Dann haben $h$ und $E$ unendlich viele Punkte gemeinsam. Aber: Sobald eine Gerade und eine Ebene mehr als nur einen Punkt gemeinsam haben, muss die Gerade auf jeden Fall in der Ebene liegen! Denn eine Gerade ist ja durch die Angabe zweier Punkte eindeutig bestimmt.

Ist jetzt alles klar? :-)

Viele Grüße
Julius


Bezug
                
Bezug
Lage Gerade Ebene: Danke!!!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:56 Mi 30.03.2005
Autor: Sonnen_scheinly

Jetzt versteh ich es, danke!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]