matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieLängenverhältnis der Höhen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Längenverhältnis der Höhen
Längenverhältnis der Höhen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Längenverhältnis der Höhen: Idee
Status: (Frage) beantwortet Status 
Datum: 14:54 Do 11.02.2010
Autor: Spencer

Aufgabe
Gegeben ist ein Dreieck ABC. Sei [mm] L_a [/mm] der Schnittpunkt der Seite a mit [mm] h_a [/mm] und [mm] L_b [/mm] der Schnittpunkt mit [mm] h_b. [/mm] Zeigen sie mit Hilfe von Ähnlichkeitssätzen, dass gilt : [mm] \bruch{|AL_a|}{|BL_b|} [/mm]  = [mm] \bruch{|a|}{|b|} [/mm]

Hallo,

könnte mir jemand bei der Aufgabe helfen!

Und zwar gibt ja die Ähnlichkeitssätze SS, SW und WW

Ich wollte nun das Dreieck [mm] AL_a [/mm] C und das Dreieck [mm] BL_b [/mm] C betrachten diese beiden Dreiecke hätten ja schon mal den gleichen Winkel bei C. Nur wie bekomm ich nun hin, dass noch eine Seite übereinstimmt damit ich den Satz SW anwenden kann ?

Bei den Seitenhalbierenden weiß ich zb. dass die sich im Verhältnis 2:1 teilen ... aber das weiß ich hier ja nicht da es sich um Höhen handelt bzw das soll ich ja gerade rausbekommen.


gruß Spencer


gruß
Spencer  

        
Bezug
Längenverhältnis der Höhen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Do 11.02.2010
Autor: abakus


> Gegeben ist ein Dreieck ABC. Sei [mm]L_a[/mm] der Schnittpunkt der
> Seite a mit [mm]h_a[/mm] und [mm]L_b[/mm] der Schnittpunkt mit [mm]h_b.[/mm] Zeigen
> sie mit Hilfe von Ähnlichkeitssätzen, dass gilt :
> [mm]\bruch{|AL_a|}{|BL_b|}[/mm]  = [mm]\bruch{|a|}{|b|}[/mm]
>  Hallo,
>  
> könnte mir jemand bei der Aufgabe helfen!
>
> Und zwar gibt ja die Ähnlichkeitssätze SS, SW und WW
>
> Ich wollte nun das Dreieck [mm]AL_a[/mm] C und das Dreieck [mm]BL_b[/mm] C
> betrachten diese beiden Dreiecke hätten ja schon mal den
> gleichen Winkel bei C. Nur wie bekomm ich nun hin, dass
> noch eine Seite übereinstimmt damit ich den Satz SW
> anwenden kann ?
>
> Bei den Seitenhalbierenden weiß ich zb. dass die sich im
> Verhältnis 2:1 teilen ... aber das weiß ich hier ja nicht
> da es sich um Höhen handelt bzw das soll ich ja gerade
> rausbekommen.
>
>
> gruß Spencer
>
>
> gruß
>  Spencer  

Hallo,
du hast da ein Verhältnis umgedreht. Da der Flächeninhalt sowohl [mm] 0,5*a*h_a [/mm] als auch [mm] 0,5*b*h_b [/mm] beträgt, gilt [mm] a*h_a =b*h_b [/mm] , und daraus folgt das umgekehrte Verhältnis [mm] a:b=h_b:h_a. [/mm]
Ähnlich sind die Dreiecke AL_aC und BL_bC nach dem Hauptähnlichkeitssatz (gemeinsamer Winkel bei C und jeweils ein rechter Winkel am Höhenfußpunkt).
Gruß Abakus


Bezug
                
Bezug
Längenverhältnis der Höhen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:35 Do 11.02.2010
Autor: Spencer

[mm] \bruch{|b|}{|a|} [/mm] ja das Verhältnis muss natürlich so heißen !

Ja stimmt 2 rechte Winkel sind da nun und der Winkel bei C also nach WW sind die beiden Deiecke dann ähnlich !

ok danke für die Hilfe !

gruß Spencer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]