matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieLänge einer Kurve (2)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Länge einer Kurve (2)
Länge einer Kurve (2) < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Länge einer Kurve (2): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 So 16.11.2008
Autor: BlubbBlubb

Aufgabe
Man zeige, dass die folgende Kurve regulär ist und zeige ihre Länge:

[mm] \gamma: [/mm] [0,1] -> [mm] \IR^3 [/mm] , [mm] \gamma(t):= (\bruch{t}{\wurzel{2}}, \bruch{t}{\wurzel{2}}, 6t^2) [/mm]

[mm] \gamma(t)'=(\bruch{1}{\wurzel{2}}, \bruch{1}{\wurzel{2}} [/mm] , 12t )

[mm] L(\gamma)=\integral_0^1 \wurzel{\bruch{1}{4} + 144t^2} [/mm] dt

wie löse ich das integral? mit partieller integration komm ich hier nicht weiter, und wie ich substituieren sollte weiß ich auch nicht.

        
Bezug
Länge einer Kurve (2): Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 So 16.11.2008
Autor: abakus


> Man zeige, dass die folgende Kurve regulär ist und zeige
> ihre Länge:
>  
> [mm]\gamma:[/mm] [0,1] -> [mm]\IR^3[/mm] ,
>  
> [mm]\gamma(t)'=(\bruch{1}{\wurzel{2}}, \bruch{1}{\wurzel{2}}[/mm] ,
> 12t )
>  
> [mm]L(\gamma)=\integral_0^1 \wurzel{\bruch{1}{4} + 144t^2}[/mm] dt

[mm]L(\gamma)=\integral_0^1 \wurzel{\bruch{1+576t^2}{4}}[/mm] dt
[mm]L(\gamma)=\integral_0^1 0,5\wurzel{1+576t^2}[/mm] dt

Jetzt wäre wohl die Substitution u=24k fällig.
Gruß Abakus



>  
> wie löse ich das integral? mit partieller integration komm
> ich hier nicht weiter, und wie ich substituieren sollte
> weiß ich auch nicht.


Bezug
                
Bezug
Länge einer Kurve (2): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 So 16.11.2008
Autor: BlubbBlubb

ich hab mich verrechnet da steht:

[mm] \integral \wurzel{1+144t^2} [/mm] dt muss ich hier immer noch substituieren oder kann ich das auch anders lösen weil ich kann substitution kaum, mir fällt es immer schwer zu erkenne wie ich substituieren muss

Bezug
                        
Bezug
Länge einer Kurve (2): Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 So 16.11.2008
Autor: abakus


> ich hab mich verrechnet da steht:
>  
> [mm]\integral \wurzel{1+144t^2}[/mm] dt muss ich hier immer noch
> substituieren oder kann ich das auch anders lösen weil ich
> kann substitution kaum, mir fällt es immer schwer zu
> erkenne wie ich substituieren muss

[mm]\integral \wurzel{1+z^2}[/mm] dz ist ein Grundintegral,
also musst du so substituieren, dass [mm] 144t^2=z^2 [/mm] gilt.
Gruß Abakus

Bezug
        
Bezug
Länge einer Kurve (2): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 So 16.11.2008
Autor: BlubbBlubb

ich will [mm] \integral (1+144*t^2) [/mm] dt lösen.

in der integrationstabelle steht:

[mm] \integral \wurzel{a^2 + x^2} [/mm] = [mm] \bruch{x}{2} \wurzel{a^2 + x^2} [/mm] + [mm] \bruch{a^2}{2} ln(x+\wurzel{a^2 + x^2}) [/mm]


wäre dann die lösung meines integrals:

[mm] \integral (1+144^2) dt=\bruch{144t}{2}\wurzel{1+144t^2}+\bruch{1}{2}ln(144t+\wurzel{1+144t^2}) [/mm]

ich weiß nämlich grad nicht wie ich mit der konstanten davor umgehen soll




Bezug
                
Bezug
Länge einer Kurve (2): Zusammenhang?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:48 So 16.11.2008
Autor: Loddar

Hallo BlubbBlubb!


Was hat Dein zu lösendes Integral mit dem genannten aus dem Tafelwerk zu tun? [aeh]


Gruß
Loddar


Bezug
                        
Bezug
Länge einer Kurve (2): Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:18 So 16.11.2008
Autor: BlubbBlubb

hmm ich dachte ich könnte das integral aus dem tafelwerk für meine aufgabe verwenden aber jetzt wo ich so drüber nachdenke hätte in dem integral im tafelwerk auch ein c für die 144 explizit stehen müßen so dass ichs anwenden kann, das heißt das sind doch zwei komplett unterschiedliche integrale, das aus dem tafelwerk und meines, stimmts?

Bezug
                                
Bezug
Länge einer Kurve (2): immer noch unklar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 So 16.11.2008
Autor: Loddar

Hallo BlubbBlubb!


Ich kann immer noch keinen Zusammenhang erkennen [kopfkratz3] .

Dein zu lösendes Integral beinhaltet keine Wurzel; jedoch das Integral aus dem Tafelwerk schon ...


Gruß
Loddar


Bezug
                                        
Bezug
Länge einer Kurve (2): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:59 So 16.11.2008
Autor: BlubbBlubb

oh mist da fehlt die wurzel bei meiner aufgabe , sorry ...  bin aber grad durch substituieren  auf folgendes gekommen:

[mm] \bruch{1}{12} \integral \wurzel{1+z^2} [/mm] dz  

bin grad auf der suche nach dem passenden integral in der tabelle dann müsste ichs gelöst kriegen



Bezug
                
Bezug
Länge einer Kurve (2): Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 So 16.11.2008
Autor: xxyy

Es kommt auf jedem fall 6,1518 als Ergebnis raus!
Das nächste mal kann ich dir mehr helfen wenn ich mit den Fomelzeichen umgehen kann

Bezug
                        
Bezug
Länge einer Kurve (2): Zahlenwert?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:14 So 16.11.2008
Autor: Loddar

Hallo xxyy!


Wie kann bei Dir bei einem unbestimmten Integral ein Zahlenwert herauskommen?


Gruß
Loddar


Bezug
                
Bezug
Länge einer Kurve (2): Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 So 16.11.2008
Autor: schachuzipus

Hallo BlubbBlubb,

> ich will [mm]\integral \sqrt{1+144*t^2}[/mm] dt lösen.
>  
> in der integrationstabelle steht:
>
> [mm]\integral \wurzel{a^2 + x^2}[/mm] = [mm]\bruch{x}{2} \wurzel{a^2 + x^2}[/mm]
> + [mm]\bruch{a^2}{2} ln(x+\wurzel{a^2 + x^2})[/mm]
>  
>
> wäre dann die lösung meines integrals:
>  
> [mm]\integral (1+144^2) dt=\bruch{144t}{2}\wurzel{1+144t^2}+\bruch{1}{2}ln(144t+\wurzel{1+144t^2})[/mm]
>  
> ich weiß nämlich grad nicht wie ich mit der konstanten
> davor umgehen soll

Du musst dein Integral erst einmal in die passende Form bringen:

[mm] $\int{\sqrt{1+144t^2} \ dt}=\int{\sqrt{144\cdot{}\left(\frac{1}{144}+t^2\right)} \ dt}=12\cdot{}\int{\sqrt{\left(\frac{1}{12}\right)^2+t^2} \ dt}$ [/mm]

Nun kannst du die Tafel hernehmen ...


LG

schachuzipus


Bezug
                        
Bezug
Länge einer Kurve (2): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Sa 22.11.2008
Autor: BlubbBlubb

thx

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]